Skip to main content

Advertisement

Log in

Natural and non-toxic products from Fabaceae Brazilian plants as a replacement for traditional antifouling biocides: an inhibition potential against initial biofouling

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, we screened for the antifouling activity of 15 species plant extracts from Brazilian the Brazilian Caatinga Fabaceae against the initial colonization of natural marine bacterial biofilm. We also investigated the potential toxicity of extracts against planktonic and benthic non-target organisms. Aqueous extracts of plants collected in the Caatinga biome (PE, Brazil) were prepared and tested at different concentration levels (0, 0.5, 1, 2, 4, and 8 mg mL−1). Natural marine bacterial consortium was inoculated in multi-well plates and incubated with the different treatments for 48 h. The biofilm and planktonic bacterial density and biomass inhibition were evaluated along with biofilm biomass eradication. The extracts that showed the highest bacterial biofilm inhibition were evaluated for toxicity against microalgae and crustaceans. The biofilm and planktonic bacterial inhibition potential were evaluated through flow cytometry and spectrophotometry. The selected treatments were evaluated for their toxicity using the microalgae Chaetoceros calcitrans, the copepod Nitokra sp., and the brine shrimp Artemia salina as bioindicators. Our work demonstrates the biotechnological potential of Fabaceae plant compounds as a safe antifouling alternative. Anadenanthera colubrina var. cebil fruits and Apuleia leiocarpa leaf extracts showed antibiofilm activity (≥ 80%), while Myroxylon peruiferum and Dioclea grandiflora leaf extracts showed antibiotic activity. These extracts were safe to planktonic and benthic non-target organisms. The results of this study point to potential substitutes to highly toxic antifouling paints and shed light on the prospect of a yet to be explored biome for more sustainable alternatives in biofouling research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agostini VO, Ritter MN, Macedo AJ, Muxagata E, Erthal F (2017) What determines sclerobiont colonization on marine mollusk shells? PLoS One 12:e0184745. https://doi.org/10.1371/journal.pone.0184745

    Article  CAS  Google Scholar 

  • Agostini VO, Macedo AJ, Muxagata E (2018) O papel do biofilme bacteriano no acoplamento bentopelágico, durante o processo de bioincrustação. Revista Liberato 19(31):1–134. https://doi.org/10.31514/rliberato.2018v19n31.p23

    Article  Google Scholar 

  • Amara I, Miled W, Slama RB, Ladhari N (2018) Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ Toxicol Pharmacol 57:115–130. https://doi.org/10.1016/j.etap.2017.12.001

    Article  CAS  Google Scholar 

  • Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LS (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119. https://doi.org/10.1093/nar/gkw1099

    Article  CAS  Google Scholar 

  • Araújo EL, Sampaio EVSB, Rodal MJN (1995) Composição florística e fitossociologia de três áreas de caatinga de Pernambuco. Rev Bras Biol 55(4):595–607

    Google Scholar 

  • Armstrong E, McKenzie JD, Goldsworthy GT (1999) Aquaculture of sponges on scallops for natural products research and antifouling. J Biotechnol 70:163–174

    Article  CAS  Google Scholar 

  • Armstrong E, Boyd KG, Pisacane A, Peppiatt CJ, Burgess JG (2000) Marine microbial natural products in antifouling coatings. Biofouling 16(2–4):215–224. https://doi.org/10.1080/08927010009378446

    Article  CAS  Google Scholar 

  • Bakus GJ, Wright M, Khan AK, Ormsby B, Gulko DA, Licuanan W, Carriazo E, Ortiz A, Chan DB, Lorenzana D, Huxley M (1994) Experiments seeking marine natural antifouling compounds. In: Thompson M-F, Nagabhushanam R, Sarojini R, Fingerman M (eds) Recent developments in biofouling control. A A Balkema, Rotterdam, pp 373–338

    Google Scholar 

  • Bejgarn S, MacLeod M, Bogdal C, Breitholtz M (2015) Toxicity of leachate from weathering plastics: an exploratory screening study with Nitocra spinipes. Chemosphere 132:114–119. https://doi.org/10.1016/j.chemosphere.2015.03.010

    Article  CAS  Google Scholar 

  • Bertram V (2000) Past, present and prospects of antifouling. Proc 32nd WEGEMT School on Marine Coatings, University of Plymouth, pp 85–97

  • Brandelli CLC, Ribeiro VB, Zimmer KR, Barth AL, Tasca T, Macedo AJ (2015) Medicinal plants used by a Mbyá-Guarani tribe against infections: activity on KPC-producing isolates and biofilm-forming bacteria. Nat Prod Commun 10(11): 12 p):464–468. https://doi.org/10.3109/13880209.2014.922587

    Article  Google Scholar 

  • Bugni TS, Richards B, Bhoite L, Cimbora D, Harper MK, Ireland CM (2008) Marine natural product libraries for high-throughput screening and rapid drug discovery. J Nat Prod 71(6):1095–1098. https://doi.org/10.1021/np800184g

    Article  CAS  Google Scholar 

  • Calabrese EJ (2014) Hormesis: a fundamental concept in biology. Microb Cell 1(5):145–149. https://doi.org/10.15698/mic2014.05.145

    Article  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  Google Scholar 

  • Cresswell T, Richards JP, Glegg GA, Readman JW (2006) The impact of legislation on the usage and environmental concentrations of Irgarol 1051 in UK coastal waters. Mar Pollut Bull 52:1169–1175. https://doi.org/10.1016/j.marpolbul.2006.01.014

    Article  CAS  Google Scholar 

  • Da Gama BAP, Carvalho AGV, Weidner K, Soares AR, Coutinho R, Fleury BG, Teixeira VL, Pereira RC (2008) Antifouling activity of natural products from Brazilian seaweeds. Bot Mar 51:191–201. https://doi.org/10.1515/BOT.2008.027

    Article  Google Scholar 

  • Desai DV (2008) Impact of Irgarol 1051 on the larval development and metamorphosis of Balanus amphitrite Darwin, the diatom Amphora coffeaformis and natural biofilm. Biofouling 24(5):393–403. https://doi.org/10.1080/08927010802339764

    Article  CAS  Google Scholar 

  • Devi P, Solimabi W, D’Souza L, Sonak S, Kamat SY, Singbai SYS (1997) Screening of some marine plants for activity against marine fouling bacteria. Bot Mar 40:87–91

    Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  Google Scholar 

  • Eldeen IMS, Van Heerden FR, Van Staden J (2010) In vitro biological activities of niloticane, a new bioactive cassane diterpene from the bark of Acacia nilotica subsp. Kraussiana. J Ethnopharmacol 128:555–560. https://doi.org/10.1016/j.jep.2010.01.057

    Article  CAS  Google Scholar 

  • Fantz PR (1991) Ethnobotany of Clitoria (Leguminosae). Econ Bot 45:511–520

    Article  Google Scholar 

  • Fernández-Alba R, Piedra L, Mezcua M, Hernando MD (2002) Toxicity of single and mixed contaminants in seawater measured with acute toxicity bioassays. Sci World J 2:1115–1120. https://doi.org/10.1100/tsw.2002.221

    Article  CAS  Google Scholar 

  • Gamarra-Rojas CFL, Sampaio EVDSB (2002) Espécies de caatinga no banco de dados do CNIP. In: Sampaio EVDSB, Giuletti AM, Virgínio J, Gamarra-Rojas CFL (eds) Vegetação e flora da caatinga. APNE-CNIP, Recife, pp 50–91

    Google Scholar 

  • Garaventa F, Gambardella C, Di Fino A, Pittore M, Faimali M (2010) Swimming speed alteration of Artemia sp. and Brachionus plicatilis as a sub-lethal behavioural end-point for ecotoxicological surveys. Ecotoxicology 19(3):512–519. https://doi.org/10.1007/s10646-010-0461-8

    Article  CAS  Google Scholar 

  • Gopikrishnan V, Radhakrishnan M, Pazhanimurugan R, Shanmugasundaram T, Balagurunathan R (2015) Natural products: potential and less explored source for antifouling compounds. J Chem Pharm Res 7(7):1144–1153

    CAS  Google Scholar 

  • Göransson U, Sjogren M, Svangard E, Claeson P, Bohlin L (2004) Reversible antifouling effect of the cyclotide cycloviolacin O2 against barnacles. J Nat Prod 67:1287–1290. https://doi.org/10.1021/np0499719

    Article  CAS  Google Scholar 

  • Gotelli NJ, Ellison AM (2013) A primer of ecological statistics, 2nd edn. Sinauer Associates, Inc. Publishers, Sunderland, p 576

  • Grasland B, Mitalane J, Briandet R, Quemener E, Meylheuc T, Linossier I, Vallee-Rehel K, Haras D (2003) Bacterial biofilm in seawater: cell surface properties of early-attached marine bacteria. Biofouling 19(5):307–313. https://doi.org/10.1080/0892701031000121041

    Article  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Can J Microbiol 8:229–239. https://doi.org/10.1139/bcb-2014-0144

    Article  CAS  Google Scholar 

  • Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000km salinity gradient of the Baltic Sea. ISME J 5:1571–1579. https://doi.org/10.1038/ismej.2011.41

    Article  CAS  Google Scholar 

  • ICRAM (2001) Metodologie analitiche di riferimento. Ministero dell’Ambiente e dela Tutela del Territorio. Servizio Difesa Mare, Roma

    Google Scholar 

  • International Organization for Standardization (ISO) (2006) Water quality and marine algal growth inhibition test with Skeletonema costatum and Phaeodactylum tricornutum, 2nd edn. ISO 10253, Geneva, p 12

  • Karlsson J, Breitholtz M, Eklund B (2006) A practical ranking system to compare toxicity of anti-fouling paints. Mar Pollut Bull 52:1661–1667. https://doi.org/10.1016/j.marpolbul.2006.06.007

    Article  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int 30:235–248. https://doi.org/10.1016/S0160-4120(03)00176-4

    Article  CAS  Google Scholar 

  • Koutsaftis A, Aoyama I (2006) The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis. Environ Toxicol 21:432–439. https://doi.org/10.1002/tox.20202

    Article  CAS  Google Scholar 

  • Koutsaftis A, Aoyama I (2007) Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina. Sci Total Environ 387:166–174. https://doi.org/10.1016/j.scitotenv.2007.07.023

    Article  CAS  Google Scholar 

  • Lee YK, Kwon KK, Cho KH, Kim HW, Park JH, Lee HK (2003) Culture and identification of Bacteria from marine biofilms. J Microbiol 41(3):183–188

    CAS  Google Scholar 

  • Lee JW, Nam JH, Kim YH, Lee KH, Lee DH (2008) Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. J Microbiol 46(2):174–182. https://doi.org/10.1007/s12275-008-0032-3

    Article  CAS  Google Scholar 

  • Lee J-H, Cho MH, Lee J (2011) 3-Indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence. Environ Microbiol 13(1):62–73. https://doi.org/10.1111/j.1462-2920.2010.02308.x

    Article  CAS  Google Scholar 

  • Libralato G, Losso C, Volpi Ghirardini A (2007) Toxicity of untreated wood leachates towards two saltwater organisms (Crassostrea gigas and Artemia franciscana). J Hazard Mater 144:590–593. https://doi.org/10.1016/j.jhazmat.2006.10.082

    Article  CAS  Google Scholar 

  • Lopes LFP, Agostini VO, Muxagata E (2018) Could some procedures commonly used in bioassays with the copepod Acartia tonsa Dana 1849 distort results? Ecotoxicol Environ Saf 150:353–365. https://doi.org/10.1016/j.ecoenv.2017.12.004

    Article  CAS  Google Scholar 

  • Malafaia CB, Jardelino ACS, Silva AGS, Souza EB, Macedo AJ, Correia MTS, Silva MV (2017) Effects of Caatinga plant extracts in planktonic growth and biofilm formation in Ralstonia solanacearum. Microb Ecol 75(3):555–561

    Article  Google Scholar 

  • Maréchal J-F, Hellio C (2009) Challenges for the development of new non-toxic antifouling challenges for the development of new non-toxic antifouling solutions. Int J Mol Sci 10:4623–4637. https://doi.org/10.3390/ijms10114623

    Article  CAS  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10

    Article  Google Scholar 

  • McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618. https://doi.org/10.1038/ismej.2011.139

    Article  CAS  Google Scholar 

  • Muthusamy S, Lundin D, Branca RMM, Baltar F, Gonzalez JM, Lehtio J, Pinhassi J (2017) Comparative proteomics reveals signature metabolisms of exponentially growing and stationary phase marine bacteria. Environ Microbiol 19(6):2301–2319

    Article  CAS  Google Scholar 

  • Nandakumar K, Yano T (2003) Biofouling and its prevention: a comprehensive overview. Biocontrol Sci 8(4):133–144

    Article  Google Scholar 

  • Okamura H, Aoyama I, Liu D, Maguire RJ, Pacepavicius GJ, Lau YL (2000) Fate and ecotoxicity of the new antifouling compound Irgarol 1051 in the aquatic environment. Water Res 34:3523–3530. https://doi.org/10.1016/S0043-1354(00)00095-6

    Article  CAS  Google Scholar 

  • Oliveira SS, Wasielesky Junior WFB, Ballester ELC, Abreu PCOV (2006) Caracterização da assembléia de bactérias nitrificantes pelo método “Fluorescent in situ Hybridization” (FISH) no biofilme e água de larvicultura do Camarão-rosa Farfantepenaeus paulensis. Atlântica 28(1):33–45

    Google Scholar 

  • Omae I (2003) General aspects of tin free antifouling paints. Chem Rev 103:3431–3488. https://doi.org/10.1021/cr030669z

    Article  CAS  Google Scholar 

  • Ozkan A, Berberoglu H (2013) Adhesion of algal cells to surfaces. Biofouling 29(4):469–482. https://doi.org/10.1080/08927014.2013.782397

    Article  Google Scholar 

  • Poth AG, Colgrave ML, Philip R, Kerenga B, Daly NL, Anderson MA, Craik DJ (2011) Discovery of cyclotides in the Fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins. ACS Chem Biol 6:345–355. https://doi.org/10.1021/cb100388j

    Article  CAS  Google Scholar 

  • Price RR, Patchan M, Clare A, Rittschof D, Bonaventura J (1994) Performance enhancement of natural antifouling compounds and their analogs through microencapsulation and controlled release. In: Thompson M-F, Nagabhushanam R, Sarojini R, Fingerman M (eds) Recent developments in biofouling control. A A Balkema, Rotterdam, pp 321–334

    Google Scholar 

  • Prigent-Combaret C, Vidal O, Dorel C, Lejeune P (1999) Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 181:5993–6002

    CAS  Google Scholar 

  • Qi SH, Xu Y, Xiong HR, Qian PY, Zhang S (2009) Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14. World J Microbiol Biotechnol 25:399–406. https://doi.org/10.1007/s11274-008-9904-2

    Article  CAS  Google Scholar 

  • Queiroz LP (2006) The Brazilian Caatinga: phytogeographical pattern inferred from distribution data of the Leguminosae. In: Pennington RT, Lewis GP, Ratter JA (eds) Neotropical savannas and dry forests: plant diversity, biogeography, and conservation. Taylor & Francis CRC Press, Oxford, pp 113–149. https://doi.org/10.1201/9781420004496.ch6

    Chapter  Google Scholar 

  • R Core Team: R [Internet]. Auckland: a language and environment for statistical computing; [accessed 2018]. Available from: https://www.R-project.org/

  • Ralston E, Swain G (2009) Bioinspiration—the solution for biofouling control? Bioinsp Biomim 4:1–9. https://doi.org/10.1088/1748-3182/4/1/015007

    Article  Google Scholar 

  • Rodrigue JP (2006a) Transportation and the geographical and functional integration of global production networks. Growth Chang 37:510–525. https://doi.org/10.1111/j.1468-2257.2006.00338.x

    Article  Google Scholar 

  • Rodrigue JP (2006b) Challenge the derived transport-demand thesis: geographical issues in freight distribution. Environ Plann A 38:1419–1462

    Article  Google Scholar 

  • Sanchez-Fortún S, Sanz F, Barahona MV (1996) Acute toxicity of several organophosphorous insecticides and protection by cholinergic antagonists and 2-PAM on Artemia salina larvae. Arch Environ Contamin Toxicol 31:391–398. https://doi.org/10.1007/BF01700957

    Article  Google Scholar 

  • Sanchez-Fortún S, Sanz F, Santa-Maria A, Ros JM, De Vicente ML, Encinas MT, Vinagre E, Barahona MV (1997) Acute sensitivity of three age classes of Artemia salina larvae to seven chlorinated solvents. Bull Environ Contamin Toxicol 59:445–451. https://doi.org/10.1007/s10661-005-6029-z

    Article  CAS  Google Scholar 

  • Satheesh S, Ba-akdah MA, Al-Sofyani AA (2016) Natural antifouling compound production by microbes associated with marine macroorganisms. Electron J Biotechnol 21:26–35. https://doi.org/10.1016/j.ejbt.2016.02.002

    Article  CAS  Google Scholar 

  • Sbrilli G, Limberti A, Caldini G, Corsini A (1998) Metodologia di saggioalgale per il controllo dei corpi idrici e delle acque di scarico. ARPATFirenze, pp 1–191

  • Schultz MP (2007) Effects of coating roughness and biofouling on ship resistance and powering. Biofouling 23:331–341

    Article  Google Scholar 

  • Schultz MP, Bendick JA, Holm ER, Hertel WM (2011) Economic impact of biofouling on a naval surface ship. Biofouling 27(1):87–98. https://doi.org/10.1080/08927014.2010.542809

    Article  CAS  Google Scholar 

  • Silva LN, Trentin DS, Zimmer KR, Treter J, Brandelli CLC, Frasson AP, Tasca T, Silva AG, Silva MV, Macedo AJ (2015) Anti-infective effects of Brazilian Caatinga plants against pathogenic bacterial biofilm formation. Pharm Biol 53(3):464–468. https://doi.org/10.3109/13880209.2014.922587

    Article  Google Scholar 

  • Silva LN, Zimmer KR, Macedo AJ, Trentin DS (2016) Plant natural products targeting bacterial virulence factors. Chem Rev 116:9162–9236. https://doi.org/10.1021/acs.chemrev.6b00184

    Article  CAS  Google Scholar 

  • SIS (1991) Determination of acute lethal toxicity of chemical substances and effluents to Nitocra spinipes Boeck — static procedure (in Swedish.). Standardiserings kommissionen i Sverige (SIS), Stockholm, Sweden

  • Soroldoni S, Abreu F, Castro ÍB, Duarte FA, Pinho GL (2017) Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? J Hazard Mater 15(330):76–82. https://doi.org/10.1016/j.jhazmat.2017.02.001

    Article  CAS  Google Scholar 

  • Srinivasan M, Swain GW (2007) Managing the use of copper-based antifouling paints. Environ Manag 39:423–441. https://doi.org/10.1007/s00267-005-0030-8

    Article  Google Scholar 

  • Steinberg PD, de Nys R (2002) Chemical mediation of colonization of seaweed surfaces. J Phycol 38:621–629

    Article  CAS  Google Scholar 

  • Teixeira VL (2010) Caracterização do Estado da Arte em Biotecnologia Marinha no Brasil. Ministério da Saúde, Organização Pan-Americana da Saúde, Ministério da Ciência e Tecnologia. – Brasília: Ministério da Saúde, (Série B. Textos Básicos de Saúde), p 134

  • Telegdi J, Trif L, Románszki L (2016) Smart anti-biofouling composite coatings for naval applications. Transport, structural, environmental and energy applications. Woodhead Publishing Series in Composites Science and Engineering. pp. 123–155. doi: https://doi.org/10.1016/B978-1-78242-283-9.00005-1

  • Trentin DS, Giordani RB, Zimmer KR, Silva AG, Silva MV, Correia MTS, Baumvol IJR, Macedo AJ (2011) Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. J Ethnopharmacol 137:327–335. https://doi.org/10.1016/j.jep.2011.05.030

    Article  Google Scholar 

  • Trentin DS, Zimmer KR, Silva MV, Giordani RB, Macedo AJ (2014) Medicinal plants from brazilian caatinga: antibiofilm and antibacterial activities against Pseudomonas aeruginosa. Revista Caatinga, Mossoró 27(3):264–271

    Google Scholar 

  • Trovão DMBM, Fernandes PD, Andrade LA, Dantas Neto J (2007) Seazonal variations of physiological aspects of Caatinga species. Rev Bras Eng Agríc Ambient 11:307–311

    Article  Google Scholar 

  • Videla HA (2002) Prevention and control of biocorrosion. International Biodeterioration and Biodegradation, Barking 49:259–270

    Article  CAS  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  Google Scholar 

  • Wang K-L, Wu Z-H, Wang Y, Wang C-Y, Xu Y (2017) Mini-review: antifouling natural products from marine microorganisms and their synthetic analogs. Mar Drugs 15:266. https://doi.org/10.3390/md15090266

    Article  CAS  Google Scholar 

  • Warnken J, Dunn RJK, Teasdale PR (2004) Investigation of recreational boats as a source of copper at anchorage sites using time-integrated diffusive gradients in thin film and sediment measurements. Mar Pollut Bull 49:833–843. https://doi.org/10.1016/j.marpolbul.2004.06.012

    Article  CAS  Google Scholar 

  • WHOI (Woods Hole Oceanographic Institution) (1952) Marine fouling and its prevention. US Naval Institute, Annapolis, Maryland. http://hdl.handle.net/1912/191

  • Yang J-L, Shen P-J, Liang X, Li Y-F, Bao W-Y, Li J-L (2013) Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling 29(3):247–259. https://doi.org/10.1080/08927014.2013.764412

    Article  CAS  Google Scholar 

  • Yerly J, Hu Y, Martinuzzi RJ (2008) Biofilm structure differentiation based on multi-resolution analysis. Biofouling 24(5):323–337. https://doi.org/10.1080/08927010802209892

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Universidade Federal of Rio Grande (FURG), Universidade Federal do Rio Grande do Sul (UFRGS), Universidade Federal de Pernambuco (UFPE), Centro de Microscopia Eletrônica do Sul (CEME-SUL), and PNPD-CAPES scholarship.

Funding

This work was supported by the PRONEM FAPERGS/CNPq (16/2551-000244-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Ochi Agostini.

Ethics declarations

National ethical statement

The present research is in accordance with Brazilian legislation for the use of genetic patrimony and tradition-associated knowledge, under the record numbers: SisGen A08E18B and SisGen A50301E.

Competing interests

The authors declare that they have no competing interests.

Additional information

Responsible editor: Giovanni Benelli

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Traditional antifouling compounds are toxic and unsafe. Thus, new alternatives are needed. Caatinga plants from the Fabaceae family could be an effective friendly antifouling alternative. Fabaceae extracts showed marine antibiofilm activity (≥ 80%) and were safe to planktonic and benthic non-target organisms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agostini, V.O., Macedo, A.J., Muxagata, E. et al. Natural and non-toxic products from Fabaceae Brazilian plants as a replacement for traditional antifouling biocides: an inhibition potential against initial biofouling. Environ Sci Pollut Res 26, 27112–27127 (2019). https://doi.org/10.1007/s11356-019-05744-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05744-4

Keywords

Navigation