Skip to main content

Advertisement

Log in

Non-toxic antifouling potential of Caatinga plant extracts: effective inhibition of marine initial biofouling

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The Caatinga biome, an endemic biome in Brazil with extreme environmental conditions, favors the production of bioactive natural compounds—with a potential antifouling effect—by terrestrial plants. We report antifouling screening of Caatinga plant extracts against marine bacterial biofilm and their toxicity towards non-target organisms. Twelve aqueous plant extracts, collected in the Vale do Catimbau region of PE, Brazil, were employed in different concentrations (0–0.5–1–2–4–8 mg mL−1) in this study. The biofilm and planktonic bacteria inhibition potential were evaluated through flow cytometry and by crystal violet assay. The treatments that showed inhibition of biofilm bacterial density (≥ 80%) and biomass were evaluated for their toxicity. Growth inhibition of the planktonic microalgae, Chaetoceros calcitrans; mortality of the benthic copepod, Nitokra sp.; and mortality and swimming alteration of the planktonic brine shrimp, Artemia salina were used as endpoints. The extracts of Harpochilus neesianus mix and Turnera hermannioides leaves presented ≥ 86% and ≥ 44% inhibition of initial biofouling density and biomass, respectively, without inhibiting marine planktonic bacterial growth, while extracts of Myracrodruon urundeuva leaves showed high antibiotic activity. These extracts were active against marine bacterial biofilms density and biomass and were safe to non-target organisms at lower concentrations. Our study demonstrates the biotechnological potential of plant extracts from Caatinga as an antifouling alternative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostini, V. O, 2018. Do plâncton ao bentos: influência de diferentes fatores físicos, químicos e biológicos no processo de bioincrustação, 2018. 208f. Tese de Doutorado (Oceanografia Biológica) – Universidade Federal do Rio Grande.

  • Agostini, V. O., A. J. Macedo & E. Muxagata, 2016. Evaluation of antibiotics as a methodological procedure to inhibit free-living and biofilm bacteria in marine zooplankton culture. Anais da Academia Brasileira de Ciências 88: 733–746.

    Article  CAS  PubMed  Google Scholar 

  • Agostini, V. O., M. N. Ritter, A. J. Macedo, E. Muxagata & F. Erthal, 2017. What determines sclerobiont colonization on marine mollusk shells? PLoS ONE 12: e0184745.

    Article  CAS  Google Scholar 

  • Agostini, V. O., A. J. Macedo & E. Muxagata, 2018a. O papel do biofilme bacteriano no acoplamento bentopelágico, durante o processo de bioincrustação. Revista Liberato 19(31): 1–134.

    Google Scholar 

  • Agostini, V. O., A. J. Macedo & E. Muxagata, 2018b. Inhibition of biofilm bacteria and adherent fungi from marine plankton cultures using an antimicrobial combination. International Aquatic Research 10(2): 165–177.

    Article  Google Scholar 

  • Agostini, V. O., A. J. Macedo, E. Muxagata, M. V. da Silva & G. L. L. Pinho, 2019. Natural and non-toxic products from Fabaceae Brazilian plants as a replacement for traditional antifouling biocides: an inhibition potential against initial biofouling. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-05744-4.

    Article  PubMed  Google Scholar 

  • Amara, I., W. Miled, R. B. Slama & N. Ladhari, 2018. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environmental Toxicology and Pharmacology 57: 115–130.

    Article  CAS  PubMed  Google Scholar 

  • Antunes, J., S. Pereira, T. Ribeiro, J. E. Plowman, A. Thomas, S. Clerens, A. Campos, V. Vasconcelos & J. R. Almeida, 2019. A multi-bioassay integrated approach to assess the antifouling potential of the cyanobacterial metabolites portoamides. Marine Drugs 17(2): E111.

    Article  PubMed  CAS  Google Scholar 

  • Azis, P. K. A., I. Al-Tisan & N. Sasikumar, 2001. Biofouling potential and environmental factors of seawater at a desalination plant intake. Desalination 135: 69–82.

    Article  CAS  Google Scholar 

  • Basso, L. A., L. H. Pereira da Silva, A. G. Fett-Neto, W. F. Jr Azevedo, I. D. S. Moreira, M. S. Palma, S. Astolfi Filho, J. B. Calixto, R. R. dos Santos, M. B. Soares & D. S. Santos, 2005. The use of biodiversity as source of new chemical entities against defined molecular targets for treatment of malaria, tuberculosis, and T-cell mediated diseases – a review. Memorias do Instituto Oswaldo Cruz 100: 475–506.

    Article  CAS  PubMed  Google Scholar 

  • Bejarano, A. C., G. T. Chandler & A. W. Decho, 2005. Influence of natural dissolved organic matter (DOM) on acute and chronic toxicity of the pesticides chlorothalonil, chlorpyrifos and fipronil on the meiobenthic estuarine copepod Amphiascus tenuiremis. Journal of Experimental Marine Biology and Ecology 321: 43–57.

    Article  CAS  Google Scholar 

  • Bejgarn, S., M. MacLeod, C. Bogdal & M. Breitholtz, 2015. Toxicity of leachate from weathering plastics: An exploratory screening study with Nitocra spinipes. Chemosphere 132: 114–119.

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson, B.-E. & M. Tarkpea, 1995. A 96-h acute toxicity test with the brackish water crustacean Nitocra spinipes boeck: assessment of chemicals, products, and effluents. Environmental Toxicology 10: 147–150.

    CAS  Google Scholar 

  • Bita, C. E. & T. Gerats, 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science 4: 273.

    Article  PubMed  PubMed Central  Google Scholar 

  • Braithwaite, R. A. & R. L. Fletcher, 2005. The toxicity of Irgarol 1051 and Sea-Nine 211 to the non-target macroalga Fucus serratus Linnaeus, with the aid of an image capture and analysis system. Journal of Experimental Marine Biology and Ecology 322: 111–121.

    Article  CAS  Google Scholar 

  • Brandelli, C. L. C., V. B. Ribeiro, K. R. Zimmer, A. L. Barth, T. Tasca & A. J. Macedo, 2015. Medicinal plants used by a Mbyá-Guarani tribe against infections: activity on KPC-producing isolates and biofilm-forming bacteria. Natural Product Communications 10(11): 1–12..

    Article  Google Scholar 

  • Calabrese, E. J., 2014. Hormesis: a fundamental concept in biology. Microbial Cell 1(5): 145–149.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho, J. Y., E.-H. Kwon, J.-S. Choi, S.-Y. Hong, H.-W. Shin & Y.-K. Hong, 2001. Antifouling activity of seaweed extracts on the green alga Enteromorpha prolifera and the mussel Mytilus edulis. Journal of Applied Phycology 13(2): 117–125.

    Article  Google Scholar 

  • Costerton, J. W., Z. Lewandowski, D. E. Caldwell, D. R. Korber & H. M. Lappin-Scott, 1995. Microbial biofilms. Annual Review of Microbiology 49: 711–745.

    Article  CAS  PubMed  Google Scholar 

  • D’Abrosca, B., E. Buommino, G. D’Angelo, L. Coretti, M. Scognamiglio, V. Severino, S. Pacifico, G. Donnarumma & A. Fiorentino, 2013. Spectroscopic identification and anti-biofilm properties of polar metabolites from the medicinal plant Helichrysum italicum against Pseudomonas aeruginosa. Bioorganic & Medicinal Chemistry 21(22): 7038–7046.

    Article  CAS  Google Scholar 

  • Dahms, H. U. & S. Dobretsov, 2017. Antifouling compounds from marine macroalgae. Marine Drugs 15(9): 265.

    Article  PubMed Central  CAS  Google Scholar 

  • Delauney, L., C. Compere & M. Lehaitre, 2010. Biofouling protection for marine environmental sensors. Ocean Science 6: 503–511.

    Article  CAS  Google Scholar 

  • Devi, P., W. Solimabi, L. D’Souza, S. Sonak, S. Y. Kamat & S. Y. S. Singbai, 1997. Screening of some marine plants for activity against marine fouling bacteria. Botanica Marina 40: 87–91.

    Google Scholar 

  • Dobretsov, S., M. Teplitski, M. Bayer, S. Gunasekera, P. Proksch & V. J. Paul, 2011. Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling 27(8): 893–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Niño, M. & Z. Islam, 2017. The potential of synthetic biology for improving environmental quality and human health in developing countries. Revista de la Universidad Industrial de Santander 49(1): 93–101.

    Article  Google Scholar 

  • Freckelton, M.-L., B. T. Nedved & M. G. Hadfield, 2017. Induction of invertebrate larval settlement; different bacteria, different mechanisms? Scientific Reports 7: 42557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garaventa, F., C. Gambardella, A. Di Fino, M. Pittore & M. Faimali, 2010. Swimming speed alteration of Artemia sp. and Brachionus plicatilis as a sub-lethal behavioural end-point for ecotoxicological surveys. Ecotoxicology 19(3): 512–519.

    Article  CAS  PubMed  Google Scholar 

  • Gopikrishnan, V., M. Radhakrishnan, R. Pazhanimurugan, T. Shanmugasundaram & R. Balagurunathan, 2015. Bioprospecting of actinobacteria from mangrove and estuarine sediments for antifouling compounds. Journal of Chemical and Pharmaceutical Research 7(7): 1144–1153.

    CAS  Google Scholar 

  • Göransson, U., M. Sjogren, E. Svangard, P. Claeson & L. Bohlin, 2004. Reversible antifouling effect of the cyclotide cycloviolacin O2 against barnacles. Journal of Natural Products 67: 1287–1290.

    Article  PubMed  CAS  Google Scholar 

  • Gotelli, N. J. & A. M. Ellison, 2013. A Primer of Ecological Statistics. Sinauer Associates, Sunderland: 576.

    Google Scholar 

  • Gupta, R. S., 2000. The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiology Reviews 24: 367–402.

    Article  CAS  PubMed  Google Scholar 

  • Guillard, R. R. L. & J. H. Ryther, 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Canadian Journal of Microbiology 8: 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Hothorn, T., F. Bretz & P. Westfall, 2008. Simultaneous inference in general parametric models. Biometrical Journal 50: 346–363.

    Article  PubMed  Google Scholar 

  • Hourmant, A., A. Amara, P. Pouline, G. Durand, G. Arzul & F. Quiniou, 2009. Effect of bentazon on growth and physiological responses of marine diatom: Chaetoceros gracilis. Toxicology, Mechanisms and Methods 19: 109–115.

    Article  CAS  Google Scholar 

  • Istituto Centrale per la Ricerca Scientifica e Tecnologica applicata al Mare (ICRAM), 2001. Metodologie analitiche di riferimento. Ministero dell’Ambiente e dela Tutela del Territorio, Servizio Difesa Mare, Roma.

    Google Scholar 

  • International Organization for Standardization (ISO), 1999. Water quality – part 5: biological methods – section 5.24: determination of acute lethal toxicity to marine copepods (Copepoda, Crustacea). London: ISO; 1999. Standard No. 6069-5.24:1999-ISO 14669:1999.

  • International Organization for Standardization (ISO), 2006. Water quality and marine algal growth inhibition test with Skeletonema costatum and Phaeodactilum tricornutum. ISO 10253: 2006.

    Google Scholar 

  • Jenkins, S. R. & G. M. Martins, 2010. Succession on hard substrata. In Dürr, S. & J. C. Thomason (eds.), Biofouling. Wiley, Oxford: 456.

    Google Scholar 

  • Konstantinou, I. K. & T. A. Albanis, 2004. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environment International 30: 235–248.

    Article  CAS  PubMed  Google Scholar 

  • Leary, D. H., R. W. Li, L. J. Hamdan, I. V. W. J. Hervey, N. Lebedev, Z. Wang, J. R. Deschamps, A. W. Kusterbeck & G. J. Vora, 2014. Integrated metagenomic and metaproteomic analyses of marine biofilm communities. Biofouling 30(10): 1211–1223.

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. W., J. H. Nam, Y. H. Kim, K. H. Lee & D. H. Lee, 2008. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces. Journal of Microbiology 46(2): 174–182.

    Article  CAS  Google Scholar 

  • Lee, J.-H., M. H. Cho & J. Lee, 2011. 3-Indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence. Environmental Microbiology 13(1): 62–73.

    Article  CAS  PubMed  Google Scholar 

  • Libralato, G., C. Losso & A. Volpi Ghirardini, 2007. Toxicity of untreated wood leachates towards two saltwater organisms (Crassostrea gigas and Artemia franciscana). Journal of Hazardous Materials 144: 590–593.

    Article  CAS  PubMed  Google Scholar 

  • Libralato, G., E. Prato, L. Migliore, A. M. Cicero & L. Manfra, 2016. A review of toxicity testing protocols and endpoints with Artemia spp. Ecological Indicators 69: 35–49.

    Article  CAS  Google Scholar 

  • Liu, Y., X. Shao, J. Huang & H. Li, 2019. Flame sprayed environmentally friendly high-density polyethylene (HDPE)–capsaicin composite coatings for marine antifouling applications. Materials Letters 238: 46–50.

    Article  CAS  Google Scholar 

  • Lopes, L. F. P., V. O. Agostini & E. Muxagata, 2018. Could some procedures commonly used in bioassays with the copepod Acartia tonsa Dana 1849 distort results? Ecotoxicology and Environmental Safety 150: 353–365.

    Article  CAS  PubMed  Google Scholar 

  • Macedo, A. J. & W. R. Abraham, 2009. Can infectious biofilm be controlled by blocking bacterial communication? Journal of Medicinal Chemistry 5(6): 517–528.

    Article  CAS  Google Scholar 

  • Malafaia, C. B., A. C. S. Jardelino, A. G. S. Silva, E. B. Souza, A. J. Macedo, M. T. S. Correia & M. V. Silva, 2017. Effects of Caatinga plant extracts in planktonic growth and biofilm formation in Ralstonia solanacearum. Microbial Ecology 75(3): 555–561.

    Article  PubMed  Google Scholar 

  • Manilal, A., S. Sujith, B. Sabarathnam, G. Seghal Kiran, J. Selvin, C. Shakir & A. P. Lipton, 2010. Antifouling potentials of seaweeds collected from the Southwest Coast of India. World Journal of Agricultural Sciences 6(3): 243–248.

    CAS  Google Scholar 

  • Mochida, K., H. Amano, T. Onduka, A. Kakuno & K. Fujii, 2010. Toxicity of 4, 5-dichloro-2-n-octyl-3 2H-isothiazolone Sea-Nine 211 to two marine teleostean fishes. Japanese Journal of Environmental Toxicology 13: 105–116.

    Google Scholar 

  • Moodie, L. W. K., G. Cervin, R. Trepos, C. Labriere, C. Hellio, H. Pavia & J. Svenson, 2018. Design and biological evaluation of antifouling dihydrostilbene oxime hybrids. Marine Biotechnology 20(2): 257–267.

    Article  CAS  PubMed  Google Scholar 

  • Muthusamy, S., D. Lundin, R. M. M. M. Branca, F. Baltar, J. M. Gonzalez, J. Lehtio & J. Pinhassi, 2017. Comparative proteomics reveals signature metabolisms of exponentially growing and stationary phase marine bacteria. Environmental Microbiology 19(6): 2301–2319.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, S. S., W. F. B. Wasielesky Junior, E. L. C. Ballester & P. C. O. V. de Abreu, 2006. Caracterização da assembléia de bactérias nitrificantes pelo método “Fluorescent in situ Hybridization” (FISH) no biofilme e água de larvicultura do Camarão-rosa Farfantepenaeus paulensis. Atlântica 28(1): 33–45.

    Google Scholar 

  • Onduka, T., D. Ojima, M. Ito, K. Ito, K. Mochida & K. Fujii, 2013. Toxicity of the antifouling biocide Sea-Nine 211 to marine algae, crustacea, and a polychaete. Fisheries Science 79(6): 999–1006.

    Article  CAS  Google Scholar 

  • Ozkan, A. & H. Berberoglu, 2013. Adhesion of algal cells to surfaces. Biofouling 29(4): 469–482.

    Article  PubMed  Google Scholar 

  • Parekh, J. & S. Chanda, 2008. Phytochemicals screening of some plants from western region of India. Research Journal of Medicinal Plant 8: 657–662.

    Google Scholar 

  • Petrova, O. E. & K. Sauer, 2012. Sticky situations: key components that control bacterial surface attachment. Journal of Bacteriology 194: 2413–2425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pichlmaier, M., V. Marwitz, C. Kühn, M. Niehaus, G. Klein, C. Bara, A. Haverich & W.-R. Abraham, 2008. High prevalence of asymptomatic bacterial colonization of rhythm management devices. Europace 10: 1067–1072.

    Article  PubMed  Google Scholar 

  • Prabhakaran, S., R. Rajaram, V. Balasubramanian & K. Mathivanan, 2012. Antifouling potentials of extracts from seaweeds, seagrasses and mangroves against primary biofilm forming bacteria. Asian Pacific Journal of Tropical Biomedicine 2(1): S316–S322.

    Article  Google Scholar 

  • R Core Team: R [Internet], 2018. Auckland: A language and environment for statistical computing; [Accessed 2018]. https://www.R-project.org/.

  • Rodriguez, N. R. M., S. Das, Y. Kaufman, J. N. Israelachvili & J. H. Waite, 2015. Interfacial pH during mussel adhesive plaque formation. Biofouling 31(2): 221–227.

    Article  PubMed Central  CAS  Google Scholar 

  • Salta, M., J. A. Wharton, S. P. Dennington, P. Stoodley & K. R. Stokes, 2013. Anti-biofilm performance of three natural products against initial bacterial attachment. International Journal of Molecular Sciences 14(11): 21757–21780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez-Fortún, S., F. Sanz & M. V. Barahona, 1996. Acute toxicity of several organophosphorous insecticides and protection by cholinergic antagonists and 2-PAM on Artemia salina larvae. Archives of Environmental Contamination and Toxicology 31: 391–398.

    Article  PubMed  Google Scholar 

  • Sanchez-Fortún, S., F. Sanz, A. Santa-Maria, J. M. Ros, M. L. De Vicente, M. T. Encinas, E. Vinagre & M. V. Barahona, 1997. Acute sensitivity of three age classes of Artemia salina larvae to seven chlorinated solvents. Bulletin of Environmental Contamination and Toxicology 59: 445–451.

    Article  PubMed  Google Scholar 

  • Sandasi, M., C. M. Leonard & A. M. Viljoen, 2010. The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Letters in Applied Microbiology 50: 30–35.

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan, S., Y. Chen, D. Saravanan, K. M. Sundram & L. Yoga Latha, 2011. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African Journal of Traditional, Complementary and Alternative Medicines 8(1): 1–10.

    CAS  Google Scholar 

  • Satheesh, S., M. A. Ba-akdah & A. A. Al-Sofyani, 2016. Natural antifouling compound production by microbes associated with marine macroorganisms – a review. Electronic Journal of Biotechnology 21: 26–35.

    Article  CAS  Google Scholar 

  • Schmidt, M. & V. Lorenzo, 2012. Synthetic constructs in/for the environment: managing the interplay between natural and engineered Biology. FEBS Letters 586(15): 2199–2206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz, M. P., J. A. Bendick, E. R. Holm & W. M. Hertel, 2011. Economic impact of biofouling on a naval surface ship. Biofouling 27(1): 87–98.

    Article  CAS  PubMed  Google Scholar 

  • Shaala, N. M. A., S. Z. Zulkifli, A. Ismail, M. N. A. Azmai & F. Mohamat-Yusuff, 2015. Lethal concentration 50 (LC50) and effects of Diuron on morphology of brine shrimp Artemia salina Nauplii (Branchiopoda: Anostraca). Procedia Environmental Sciences 30: 279–284.

    Article  CAS  Google Scholar 

  • Sbrilli, G., A. Limberti, G. Caldini & A. Corsini, 1998. Metodologia di saggioalgale per il controllo dei corpi idrici e delle acque di scarico. ARPATFirenze, pp 1–191

  • Silva, L. N., D. S. Trentin, K. R. Zimmer, J. Treter, C. L. C. Brandelli, A. P. Frasson, T. Tasca, A. G. Silva, M. V. Silva & A. J. Macedo, 2015. Anti-infective effects of Brazilian Caatinga plants against pathogenic bacterial biofilm formation. Pharmaceutical Biology 53(3): 464–468.

    Article  PubMed  Google Scholar 

  • Silva, L. N., K. R. Zimmer, A. J. Macedo & D. S. Trentin, 2016. Plant natural products targeting bacterial virulence factors. Chemical Reviews 116: 9162–9236.

    Article  CAS  PubMed  Google Scholar 

  • Swedish Institute for Standards (SIS), 1991. Determination of acute lethal toxicity of chemical substances and effluents to Nitocra spinipes Boeck – static procedure (in Swedish.). Standardiserings kommissionen i Sverige (SIS), Stockholm, Sweden.

  • Soroldoni, S., F. Abreu, I. B. Castro, F. A. Duarte & G. L. L. Pinho, 2017. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? Journal of Hazardous Materials 15(330): 76–82.

    Article  CAS  Google Scholar 

  • Stenz, L., P. François, A. Fischer, A. Huyghe, M. Tangomo, D. Hernandez, J. Cassat, P. Linder & J. Schrenzel, 2008. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiology Letters 287(2): 149–155.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, P. S. & J. W. Costerton, 2001. Antibiotic resistance of bacteria in biofilms. The Lancet 358: 135–138.

    Article  CAS  Google Scholar 

  • Swain, G., B. Kovach, A. Touzot, F. Cassé & C. Kavanagh, 2007. Measuring the performance of today’s antifouling coatings. Journal of Ship Production 23(3): 164–170.

    Google Scholar 

  • Teixeira, V.L, 2010. Caracterização do Estado da Arte em Biotecnologia Marinha no Brasil. Ministério da Saúde, Organização Pan-Americana da Saúde, Ministério da Ciência e Tecnologia – Brasília: Ministério da Saúde, (Série B. Textos Básicos de Saúde), 134 p.

  • Telegdi, J., L. Trif & L. Románszki, 2016. Smart anti-biofouling composite coatings for naval applications. Transport, structural, environmental and energy applications. Woodhead Publishing Series in Composites Science and Engineering, pp. 123–155.

  • Throndsen, J., 1978. Preservation and storage. In Sournia, A. (ed.), Phytoplankton Manual. UNESCO, Paris: 69–74.

    Google Scholar 

  • Trentin, D. S., R. B. Giordani, K. R. Zimmer, A. G. Silva, M. V. Silva, M. T. S. Correia, I. J. R. Baumvol & A. J. Macedo, 2011. Potential of medicinal plants from the Brazilian semi-arid region (Caatinga) against Staphylococcus epidermidis planktonic and biofilm lifestyles. Journal of Ethnopharmacology 137: 327–335.

    Article  Google Scholar 

  • Wagner, H. & S. Bladt, 1996. Plant Drug Analysis: A Thin Layer Chromatography Atlas, 2nd ed. Springer, Berlin: 368.

    Book  Google Scholar 

  • Wahl, M., 1989. Marine epibiosis: fouling and antifouling some basics aspects. Marine Ecology Progress Series 58: 175–189.

    Article  Google Scholar 

  • Yadav, R. & M. Agarwala, 2011. Phytochemical analysis of some medicinal plants. Journal of Phytology 3(12): 10–14.

    CAS  Google Scholar 

  • Yan, T. & W. X. Yan, 2003. Fouling of offshore structures in China – a Review. Biofouling 19(Supplement): 133–138.

    Article  PubMed  Google Scholar 

  • Zhou, X., Z. Zhang, Y. Xu, C. Jin, H. He, X. Hao & P.-Y. Qian, 2009. Flavone and isoflavone derivatives of terrestrial plants as larval settlement inhibitors of the barnacle Balanus amphitrite. Biofouling 25(1): 69–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of Universidade Federal of Rio Grande (FURG), Universidade Federal do Rio Grande do Sul (UFRGS), and Universidade Federal de Pernambuco (UFPE) for space, equipment assistance, and plant material, respectively, and Centro de Microscopia Eletrônica do Sul (CEME-SUL) for microscopy analysis, and PNPD-CAPES scholarship.

Funding

This work was supported by the grants PRONEM FAPERGS/CNPq 11/2014 (6/2551-000244-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Ochi Agostini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The present research is in accordance with Brazilian legislation for the use of genetic patrimony and tradition-associated knowledge under the record numbers: SisGen A08E18B and SisGen A50301E.

Additional information

Handling editor: Iacopo Bertocci

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1037 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agostini, V.O., Macedo, A.J., Muxagata, E. et al. Non-toxic antifouling potential of Caatinga plant extracts: effective inhibition of marine initial biofouling. Hydrobiologia 847, 45–60 (2020). https://doi.org/10.1007/s10750-019-04071-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-019-04071-6

Keywords

Navigation