Skip to main content

Advertisement

Log in

Synthetic melanin nanoparticles as peroxynitrite scavengers, photothermal anticancer and heavy metals removal platforms

  • Nanotechnology, Nanopollution, Nanotoxicology and Nanomedicine (NNNN)
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Melanin is a ubiquitous natural polyphenolic pigment with versatile applications including physiological functions. This polymeric material is found in a diversity of living organisms from bacteria to mammals. The biocompatibility and thermal stability of melanin nanoparticles make them good candidates to work as free radical scavengers and photothermal anticancer substrates. Research studies have identified melanin as an antioxidative therapeutic agent and/or reactive oxygen species (ROS) scavenger that includes neutralization of peroxynitrite. In addition, melanin nanoparticles have emerged as an anticancer photothermal platform that has the capability to kill cancer cells. Recently, melanin nanoparticles have been successfully used as chelating agents to purify water from heavy metals, such as hexavalent chromium. This review article highlights some selected aspects of cutting-edge melanin applications. Herein, we will refer to the recent literature that addresses melanin nanoparticles and its useful physicochemical properties as a hot topic in biomaterial science. It is expected that the techniques of Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and time-resolved Electron Paramagnetic Resonance (EPR) will have a strong impact on the full characterization of melanin nanoparticles and the subsequent exploration of their physiological and chemical mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akeo K, Amaki S, Suzuki T, Hiramitsu T (2000) Melanin granules prevent the cytotoxic effects of l-DOPA on retinal pigment epithelial cells in vitro by regulation of NO and superoxide radicals. Pigment Cell Res 13:80–88

    Article  CAS  Google Scholar 

  • Aksu Z, Özer D, Ekiz HI, Kutsal T, Çaglar A (1996) Investigation of biosorption of chromium (VI) on Cladophora crispata in two-staged batch reactor. Environ Technol 17:215–220

    Article  CAS  Google Scholar 

  • Bayachou M, Altawallbeh G, Kalil H, Wojciechowski S, Bose T (2015) Methods of peroxynitrite synthesis in the context of the development and validation of peroxynitrite sensors. In: Peroxynitrite detection in biological media. pp 48–62

  • Bernsmann F, Ponche A, Ringwald C, Hemmerlé J, Raya J, Bechinger B, Voegel JC, Schaaf P, Ball V (2009) Characterization of dopamine−melanin growth on silicon oxide. J Phys Chem C 113:8234–8242. https://doi.org/10.1021/jp901188h

    Article  CAS  Google Scholar 

  • Bernsmann F, Voegel JC, Ball V (2011) Different synthesis methods allow to tune the permeability and permselectivity of dopamine-melanin films to electrochemical probes. Electrochim Acta 56:3914–3919. https://doi.org/10.1016/j.electacta.2011.02.028

    Article  CAS  Google Scholar 

  • Calace N, Di Muro A, Nardi E, Petronio B, Pietroletti M (2002) Adsorption isotherms for describing heavy-metal retention in paper mill sludges. Ind Eng Chem Res 41:5491–5497

    Article  CAS  Google Scholar 

  • Chakravarti A, Chowdhury S, Chakrabarty S, Chakrabarty T, Mukherjee D (1995) Liquid membrane multiple emulsion process of chromium (VI) separation from waste waters. Colloids Surf A Physicochem Eng Asp 103:59–71

    Article  CAS  Google Scholar 

  • Costa TG, Younger R, Poe C, Farmer PJ, Szpoganicz B (2012) Studies on synthetic and natural melanin and its affinity for Fe(III). Ion Bioinorg Chem Appl 2012:712840. https://doi.org/10.1155/2012/712840

    Article  CAS  Google Scholar 

  • Cuong AM, Le Na NT, Thang PN, Diep TN, Thuy LB, Thanh NL, Thang ND (2018) Melanin-embedded materials effectively remove hexavalent chromium (Cr VI) from aqueous solution. Environ Health Prev Med 23:9

    Article  Google Scholar 

  • Daiber A, Zou M-H, Bachschmid M, Ullrich V (2000) Ebselen as a peroxynitrite scavenger in vitro and ex vivo. Biochem Pharmacol 59:153–160

    Article  CAS  Google Scholar 

  • Dobry AS, Fisher DE (2018) The biology of pigmentation. In: Melanoma. Springer, pp 1–30

  • Drel VR, Pacher P, Vareniuk I, Pavlov I, Ilnytska O, Lyzogubov VV, Tibrewala J, Groves JT, Obrosova IG (2007) A peroxynitrite decomposition catalyst counteracts sensory neuropathy in streptozotocin-diabetic mice. Eur J Pharmacol 569:48–58. https://doi.org/10.1016/j.ejphar.2007.05.055

    Article  CAS  Google Scholar 

  • Dzierzega-Lecznar A, Stepien K, Chodurek E, Kurkiewicz S, Swiatkowska L, Wilczok T (2003) Pyrolysis-gas chromatography/mass spectrometry of peroxynitrite-treated melanins. J Anal Appl Pyrolysis 70:457–467. https://doi.org/10.1016/S0165-2370(03)00004-4

    Article  CAS  Google Scholar 

  • Enochs WS, Petherick P, Bogdanova A, Mohr U, Weissleder R (1997) Paramagnetic metal scavenging by melanin: MR imaging. Radiology 204:417–423. https://doi.org/10.1148/radiology.204.2.9240529

    Article  CAS  Google Scholar 

  • Fedorow H, Tribl F, Halliday G, Gerlach M, Riederer P, Double KL (2005) Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson's disease. Prog Neurobiol 75:109–124. https://doi.org/10.1016/j.pneurobio.2005.02.001

    Article  CAS  Google Scholar 

  • Feelisch M, Ostrowski J, Noack E (1989) On the mechanism of NO release from sydnonimines. J Cardiovasc Pharmacol 14:S13–S22. https://doi.org/10.1097/00005344-198914110-00004

    Article  CAS  Google Scholar 

  • Gautam RK, Sharma SK, Mahiya S, Chattopadhyaya MC (2014) Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation heavy metals in water: presence, removal and safety:1–24

  • Gidanian S, Farmer PJ (2002) Redox behavior of melanins: direct electrochemistry of dihydroxyindole-melanin and its Cu and Zn adducts. J Inorg Biochem 89:54–60. https://doi.org/10.1016/S0162-0134(01)00405-6

    Article  CAS  Google Scholar 

  • Gilad E, Cuzzocrea S, Zingarelli B, Salzman AL, Szabó C (1997) Melatonin is a scavenger of peroxynitrite. Life Sci 60:PL169–PL174

    Article  CAS  Google Scholar 

  • Heijnen C, Haenen G, Van Acker F, Van der Vijgh W, Bast A (2001) Flavonoids as peroxynitrite scavengers: the role of the hydroxyl groups. Toxicol in Vitro 15:3–6

    Article  CAS  Google Scholar 

  • Hong L, Simon JD (2005) Physical and chemical characterization of Iris and choroid melanosomes isolated from newborn and mature cows. Photochem Photobiol 81:517–523. https://doi.org/10.1562/2005-03-02-RA-453

    Article  CAS  Google Scholar 

  • Hong L, Liu Y, Simon JD (2004) Binding of metal ions to melanin and their effects on the aerobic reactivity. Photochem Photobiol 80:477–481

    Article  CAS  Google Scholar 

  • Hooper D, Scott G, Zborek A, Mikheeva T, Kean R, Koprowski H, Spitsin S (2000) Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood–CNS barrier permeability changes, and tissue damage in a mouse model of multiple sclerosis. FASEB J 14:691–698

    Article  CAS  Google Scholar 

  • Ito S, Wakamatsu K (2003) Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res 16:523–531. https://doi.org/10.1034/j.1600-0749.2003.00072.x

    Article  Google Scholar 

  • Jiang Q, Luo Z, Men Y, Yang P, Peng H, Guo R, Tian Y, Pang Z, Yang W (2017) Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy. Biomaterials 143:29–45. https://doi.org/10.1016/j.biomaterials.2017.07.027

    Article  CAS  Google Scholar 

  • Jing L, Qu H, Wu D, Zhu C, Yang Y, Jin X, Zheng J, Shi X, Yan X, Wang Y (2018) Platelet-camouflaged nanococktail: simultaneous inhibition of drug-resistant tumor growth and metastasis via a cancer cells and tumor vasculature dual-targeting strategy. Theranostics 8:2683–2695. https://doi.org/10.7150/thno.23654

    Article  CAS  Google Scholar 

  • Kalil H, Bayachou M (2014) Graphene-based nanostructured interfaces for selective and sensitive peroxynitrite detection. Nitric Oxide 42:128. https://doi.org/10.1016/j.niox.2014.09.088

    Article  Google Scholar 

  • Kalil H, Maher S, Bose T, Al-Mahmoud O, Kay C, Bayachou M (2017) Synthetic melanin films as potential interfaces for peroxynitrite detection and quantification. ECS Trans 80:1447–1458. https://doi.org/10.1149/08010.1447ecst

    Article  CAS  Google Scholar 

  • Kalil H, Maher S, Bose T, Bayachou M (2018) Manganese oxide/hemin-functionalized graphene as a platform for peroxynitrite sensing. J Electrochem Soc 165:g3133–g3140. https://doi.org/10.1149/2.0221812jes

    Article  CAS  Google Scholar 

  • Kang ET, Neoh KG, Tan KL (1993) X-ray photoelectron spectroscopic studies of electroactive polymers. In: Polymer characteristics. Advances in polymer science. Springer Berlin Heidelberg, Berlin, pp 135–190. https://doi.org/10.1007/BFb0025863

    Chapter  Google Scholar 

  • Kim IG, Nam HJ, Ahn HJ, Jung DY (2011) Electrochemical growth of synthetic melanin thin films by constant potential methods. Electrochim Acta 56:2954–2959. https://doi.org/10.1016/j.electacta.2010.12.095

    Article  CAS  Google Scholar 

  • Kollias N, Sayre RM, Zeise L, Chedekel MR (1991) New trends in photobiology: photoprotection by melanin. J Photochem Photobiol B 9:135–160

    Article  CAS  Google Scholar 

  • Lee CS, Lee CS, Ko HH, Song JH, Han ES (2002) Effect of R-(−)-deprenyl and harmaline on dopamine- and peroxynitrite-induced membrane permeability transition in brain mitochondria. Neurochem Res 27:215–224. https://doi.org/10.1023/A:1014832520809

    Article  CAS  Google Scholar 

  • Levrand S, Pesse B, Feihl F, Waeber B, Pacher P, Rolli J, Schaller MD, Liaudet L (2005) Peroxynitrite is a potent inhibitor of NF-{kappa}B activation triggered by inflammatory stimuli in cardiac and endothelial cell lines. J Biol Chem 280:34878–34887. https://doi.org/10.1074/jbc.M501977200

    Article  CAS  Google Scholar 

  • Levrand S, Vannay-Bouchiche C, Pesse B, Pacher P, Feihl F, Waeber B, Liaudet L (2006) Peroxynitrite is a major trigger of cardiomyocyte apoptosis in vitro and in vivo. Free Radic Biol Med 41:886–895. https://doi.org/10.1016/j.freeradbiomed.2006.04.034

    Article  CAS  Google Scholar 

  • Li J, Loukili N, Rosenblatt-Velin N, Pacher P, Feihl F, Waeber B, Liaudet L (2013) Peroxynitrite is a key mediator of the cardioprotection afforded by ischemic postconditioning in vivo. PLoS One 8:e70331. https://doi.org/10.1371/journal.pone.0070331

    Article  CAS  Google Scholar 

  • Liaudet L, Rosenblatt-Velin N, Pacher P (2013) Role of peroxynitrite in the cardiovascular dysfunction of septic shock. Curr Vasc Pharmacol 11:196–207

    CAS  Google Scholar 

  • Liu Y, Hong L, Kempf VR, Wakamatsu K, Ito S, Simon JD (2004) Ion-exchange and adsorption of Fe (III) by Sepia melanin. Pigment Cell Res 17:262–269. https://doi.org/10.1111/j.1600-0749.2004.00140.x

    Article  CAS  Google Scholar 

  • Liu Y, Hong L, Wakamatsu K, Ito S, Adhyaru B, Cheng CY, Bowers CR, Simon JD (2005) Comparison of structural and chemical properties of black and red human hair melanosomes. Photochem Photobiol 81:135–144. https://doi.org/10.1562/2004-08-03-RA-259.1

    Article  CAS  Google Scholar 

  • Liu Y, Ai K, Liu J, Deng M, He Y, Lu L (2013) Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 25:1353–1359. https://doi.org/10.1002/adma.201204683

    Article  CAS  Google Scholar 

  • Liu Y, Ai K, Ji X, Askhatova D, Du R, Lu L, Shi J (2017) Comprehensive insights into the multi-antioxidative mechanisms of melanin nanoparticles and their application to protect brain from injury in ischemic stroke. J Am Chem Soc 139:856–862. https://doi.org/10.1021/jacs.6b11013

    Article  CAS  Google Scholar 

  • Loukili N, Rosenblatt-Velin N, Li J, Clerc S, Pacher P, Feihl F, Waeber B, Liaudet L (2011) Peroxynitrite induces HMGB1 release by cardiac cells in vitro and HMGB1 upregulation in the infarcted myocardium in vivo. Cardiovasc Res 89:586–594. https://doi.org/10.1093/cvr/cvq373

    Article  CAS  Google Scholar 

  • Lydén A, Larsson BS, Lindquist NG (1984) Melanin affinity of manganese. Acta Pharmacol Toxicol 55:133–138

    Article  Google Scholar 

  • Meredith P, Sarna T (2006) The physical and chemical properties of eumelanin. Pigment Cell Res 19:572–594. https://doi.org/10.1111/j.1600-0749.2006.00345.x

    Article  CAS  Google Scholar 

  • Meyskens F, Gidanian S, Farmer PJ (2006) Pro-oxidant properties of melanosomal melanin from melanoma origin. Free Radic Biol Med 41:S111–S111

    Google Scholar 

  • Mohan D, Pittman CU Jr (2006) Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. J Hazard Mater 137:762–811. https://doi.org/10.1016/j.jhazmat.2006.06.060

    Article  CAS  Google Scholar 

  • Mohan D, Singh KP, Singh VK (2006) Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. J Hazard Mater 135:280–295

    Article  CAS  Google Scholar 

  • Mukhopadhyay P, Rajesh M, Bátkai S, Kashiwaya Y, Haskó G, Liaudet L, Szabó C, Pacher P (2009) Role of superoxide, nitric oxide, and peroxynitrite in doxorubicin-induced cell death in vivo and in vitro. Am J Physiol Heart Circ Physiol 296:H1466–H1483. https://doi.org/10.1152/ajpheart.00795.2008

    Article  CAS  Google Scholar 

  • Ohgami N, Yamanoshita O, Thang ND, Yajima I, Nakano C, Wenting W, Ohnuma S, Kato M (2015) Carcinogenic risk of chromium, copper and arsenic in CCA-treated wood. Environ Pollut 206:456–460. https://doi.org/10.1016/j.envpol.2015.07.041

    Article  CAS  Google Scholar 

  • Oprea R, Peteu SF, Subramanian P, Qi W, Pichonat E, Happy H, Bayachou M, Boukherroub R, Szunerits S (2013) Peroxynitrite activity of hemin-functionalized reduced graphene oxide. Analyst 138:4345–4352. https://doi.org/10.1039/c3an00678f

    Article  CAS  Google Scholar 

  • Pacher P, Szabo C (2006) Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol 6:136–141. https://doi.org/10.1016/j.coph.2006.01.001

    Article  CAS  Google Scholar 

  • Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424. https://doi.org/10.1152/physrev.00029.2006

    Article  CAS  Google Scholar 

  • Padmaja S, Madison SA (1999) Reaction of peroxynitrite with the melanin precursor, 5,6-dihydroxyindole-2-carboxylic acid. Res Chem Intermed 25:441–458. https://doi.org/10.1163/156856799x00040

    Article  CAS  Google Scholar 

  • Pagilla KR, Canter LW (1999) Laboratory studies on remediation of chromium-contaminated soils. J Environ Eng 125:243–248

    Article  CAS  Google Scholar 

  • Panessa B, Zadunaisky J (1981) Pigment granules: a calcium reservoir in the vertebrate eye. Exp Eye Res 32:593–604

    Article  CAS  Google Scholar 

  • Peteu SF, Banihani S, Gunesekera MM, Peiris P, Sicuia OA, Bayachou M (2011) Peroxynitrite and nitroxidative stress: detection probes and micro-sensors. A case of a nanostructured catalytic film. In: Oxidative stress: diagnostics, prevention, and therapy, vol 1083. ACS symposium series, vol 1083. American Chemical Society, pp 311–339. https://doi.org/10.1021/bk-2011-1083.ch011

    Google Scholar 

  • Regoli F, Winston GW (1999) Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals. Toxicol Appl Pharmacol 156:96–105. https://doi.org/10.1006/taap.1999.8637

    Article  CAS  Google Scholar 

  • Salomäki M, Tupala M, Parviainen T, Leiro J, Karonen M, Lukkari J (2016) Preparation of thin melanin-type films by surface-controlled oxidation. Langmuir 32:4103–4112

    Article  Google Scholar 

  • Sarna T, Plonka PM (2005) Biophysical studies of melanin. In: Biomedical EPR, part A: free radicals, metals, medicine, and physiology. Springer, pp 125–146

  • Schraermeyer U, Heimann K (1999) Current understanding on the role of retinal pigment epithelium and its pigmentation. Pigment Cell Res 12:219–236

    Article  CAS  Google Scholar 

  • Seagle BL, Rezai KA, Gasyna EM, Kobori Y, Rezaei KA, Norris JR Jr (2005) Time-resolved detection of melanin free radicals quenching reactive oxygen species. J Am Chem Soc 127:11220–11221. https://doi.org/10.1021/ja052773z

    Article  CAS  Google Scholar 

  • Seaman JC, Bertsch PM, Schwallie L (1999) In situ Cr (VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe (II) solutions. Environ Sci Technol 33:938–944

    Article  CAS  Google Scholar 

  • Simon JD (2000) Spectroscopic and dynamic studies of the epidermal chromophores trans-urocanic acid and eumelanin. Acc Chem Res 33:307–313. https://doi.org/10.1021/ar970250t

    Article  CAS  Google Scholar 

  • Singha B, Naiya TK, kumar Bhattacharya A, Das SK (2011) Cr (VI) ions removal from aqueous solutions using natural adsorbents–FTIR studies. J Environ Prot 2:729–735

    Article  CAS  Google Scholar 

  • Slominski RM, Zmijewski MA, Slominski AT (2015) The role of melanin pigment in melanoma. Exp Dermatol 24:258–259. https://doi.org/10.1111/exd.12618

    Article  CAS  Google Scholar 

  • Solano F (2017) Melanin and melanin-related polymers as materials with biomedical and biotechnological applications—cuttlefish ink and mussel foot proteins as inspired biomolecules. Int J Mol Sci 18:1561

    Article  CAS  Google Scholar 

  • Stepień K, Wilczok A, Zajdel A, Dzierzega-Lecznar A, Wilczok T (1999) Peroxynitrite mediated linoleic acid oxidation and tyrosine nitration in the presence of synthetic neuromelanins. Acta Biochim Pol 47:931–940

    Article  Google Scholar 

  • Stępień K, Zajdel A, Wilczok A, Wilczok T, Grzelak A, Mateja A, Soszyński M, Bartosz G (2000) Dopamine-melanin protects against tyrosine nitration, tryptophan oxidation and Ca (2+)-ATPase inactivation induced by peroxynitrite. Biochim Biophys Acta 1523:189–195

    Article  Google Scholar 

  • Subianto S, Will G, Meredith P (2005) Electrochemical synthesis of melanin free-standing films. Polymer 46:11505–11509. https://doi.org/10.1016/j.polymer.2005.10.068

    Article  CAS  Google Scholar 

  • Szabo C et al (2002) Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med 8:571–580

    Article  CAS  Google Scholar 

  • Szpoganicz B, Gidanian S, Kong P, Farmer P (2002) Metal binding by melanins: studies of colloidal dihydroxyindole-melanin, and its complexation by Cu (II) and Zn (II) ions. J Inorg Biochem 89:45–53

    Article  CAS  Google Scholar 

  • Taubitz T, Tschulakow AV, Tikhonovich M, Illing B, Fang Y, Biesemeier A, Julien-Schraermeyer S, Schraermeyer U (2018) Ultrastructural alterations in the retinal pigment epithelium and photoreceptors of a Stargardt patient and three Stargardt mouse models: indication for the central role of RPE melanin in oxidative stress. PeerJ 6:e5215. https://doi.org/10.7717/peerj.5215

    Article  CAS  Google Scholar 

  • Tiravanti G, Petruzzelli D, Passino R (1997) Pretreatment of tannery wastewaters by an ion exchange process for Cr (III) removal and recovery. Water Sci Technol 36:197–207

    Article  CAS  Google Scholar 

  • Vinay K, Yadav S, Handa S (2014) Zinc deficiency and Canities: an unusual manifestation. JAMA Dermatol 150:1116–1117. https://doi.org/10.1001/jamadermatol.2014.368

    Article  Google Scholar 

  • Vincensi M et al (1998) Phaeomelanin versus eumelanin as a chemical indicator of ultraviolet sensitivity in fair-skinned subjects at high risk for melanoma: a pilot study. Melanoma Res 8:53–58

    Article  CAS  Google Scholar 

  • Wunsche J, Rosei F, Graeff CFO, Santato C (2011) Growth and morphology of eumelanin thin films - a future bioelectronic material? ECS Trans 35:75–81. https://doi.org/10.1149/1.3571978

    Article  CAS  Google Scholar 

  • Yao S, Chen H, Zhang Q, Shi Z, Liu J, Lian Z, Feng H, du Q, Xie J, Ge W, Zhou H (2018) Pain during the acute phase of Guillain–Barré syndrome. Medicine 97:e11595

    Article  Google Scholar 

  • Ye Y, Wang C, Zhang X, Hu Q, Zhang Y, Liu Q, Wen D, Milligan J, Bellotti A, Huang L, Dotti G, Gu Z (2017) A melanin-mediated cancer immunotherapy patch. Sci Immunol 2. https://doi.org/10.1126/sciimmunol.aan5692

    Article  Google Scholar 

  • Youdim M, Riederer P (1993) Dopamine metabolism and neurotransmission in primate brain in relationship to monoamine oxidase A and B inhibition. J Neural Transm [Gen Sect] 91:181–195

    Article  CAS  Google Scholar 

  • Yu XH, Gu ZX, Shao R, Chen HX, Wu XJ, Xu W (2011) Study on adsorbing chromium (VI) ions in wastewater by aureobacidium pullulans secretion of melanin. In: Advanced materials research. Trans Tech Publ, pp 1378–1384

  • Zecca L, Swartz H (1993) Total and paramagnetic metals in human substantia nigra and its neuromelanin. J Neural Transm [P-D Sect] 5:203–213

    Article  CAS  Google Scholar 

  • Zhang R, Fan Q, Yang M, Cheng K, Lu X, Zhang L, Huang W, Cheng Z (2015) Engineering melanin nanoparticles as an efficient drug–delivery system for imaging-guided chemotherapy. Adv Mater 27:5063–5069. https://doi.org/10.1002/adma.201502201

    Article  CAS  Google Scholar 

  • Zhou X, Korenaga T, Takahashi T, Moriwake T, Shinoda S (1993) A process monitoring/controlling system for the treatment of wastewater containing chromium(VI). Water Res 27:1049–1054

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Keith R. Miller and Mrs. Linda Scott for their valuable feedbacks on some aspects of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitham Kalil.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maher, S., Mahmoud, M., Rizk, M. et al. Synthetic melanin nanoparticles as peroxynitrite scavengers, photothermal anticancer and heavy metals removal platforms. Environ Sci Pollut Res 27, 19115–19126 (2020). https://doi.org/10.1007/s11356-019-05111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05111-3

Keywords

Navigation