Skip to main content

Advertisement

Log in

Interactive effect of potassium and flyash: a soil conditioner on metal accumulation, physiological and biochemical traits of mustard (Brassica juncea L.)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

At present plants continuously bare to various environmental stresses due to the rapid climate change that adversely affects the growth and nutrient status of the soil and plant. Application of flyash (FA) in combination with potassium (K) fertilizer amendment improves soil physico-chemical characteristics, growth and yield of plants. Mustard grown in combination with FA (0, 20, 40 or 60 t ha−1) and K (0, 30 or 60 kg ha−1) treated soil was used to evaluate the effect on heavy metals (Cd, Cr and Pb) concentration and antioxidant system. The experiment was conducted in a net house of the Department of Botany, Aligarh Muslim University, Aligarh. Sampling was done at 70 DAS. The results showed that concentration of metals was found maximum in roots than the leaf and seeds. FA60 accompanied by K30 and K60 cause oxidative stress through lipid peroxidation and showed reduced levels of photosynthesis and enzymatic activity. Proline and ascorbate content increases with increasing flyash doses to combat stress. However, flyash at the rate of 40 t ha−1 together with K60 followed by K30 significantly boosted crop growth by enhancing antioxidant activity which plays a critical role in ameliorating the oxidative stress.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aitken RL, Campbell DJ, Bell LC (1984) Properties of Australian flyash relevant to their agronomic utilization. Aust J Soil Res 22:443–453

    Article  CAS  Google Scholar 

  • Amm I, Sommer T, Wolf DH (2014) Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta 1843:182–196

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Philos Trans R Soc Lond Ser B Biol Sci 355:1419–1430

    Article  CAS  Google Scholar 

  • Ashfaque F, Inam A, Inam A, Iqbal S, Sahay S (2017) Response of silicon on metal accumulation, photosynthetic inhibition and oxidative stress in chromium-induced mustard (Brassica juncea L.). S Afr J Bot 111:153–160

    Article  CAS  Google Scholar 

  • Asthana DK, Asthana M (1998) Environment problems and solutions. S. Chand & Co., New Delhi, pp 168–169

    Google Scholar 

  • Bates LS, Walden RT, Tearse ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins utilising the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Brännvall E, Nilsson M, Sjöblom R, Skoglund N, Kumpiene J (2014) Effect of residue combinations on plant uptake of nutrients and potentially toxic elements. J Environ Manag 132:287–295

    Article  CAS  Google Scholar 

  • Çakmak I, Horst JH (1991) Effects of aluminum on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  Google Scholar 

  • Choudhary M, Jetley UK, Khan MA, Zutshi S, Fatma T (2007) Effect of heavy metal stress on proline, malondialdehyde, and superoxide dismutase activity in the Cyanobacterium spirulina platensis-S5. Ecotoxicol Environ Saf 66:204–209

    Article  CAS  Google Scholar 

  • Davik J, Heneen WK (1993) Identification of oilseed rape turnip (Brassica rapa L. var. Oleifera) cultivar groups by their fatty acid and glucosinolate profiles. J Sci Food Agric 63:385–390

    Article  CAS  Google Scholar 

  • Devlin RM (1972) Plant physiology, 3rd edn. Van Nostrand Company, New York, p 1001

    Google Scholar 

  • Dwivedi RS, Randhawa NS (1974) Evaluation of a rapid test for the hidden hunger of zinc in plants. Plant Soil 40:445–451

    Article  CAS  Google Scholar 

  • Dwivedi S, Tripathi RD, Srivastava S, Mishra S, Shukla MK, Tiwari KK, Singh R, Rai UN (2007) Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amended soil. Chemosphere 67:140–151

    Article  CAS  Google Scholar 

  • El-Mogazi D, Lisk DJ, Weinstein LH (1988) A review of physical, chemical and biological properties of flyash and effects on agricultural ecosystems. Sci Total Environ 74:1–37

    Article  CAS  Google Scholar 

  • Ernst WHO (1998) Sulfur metabolism in higher plants: potential for phytoremediation. Biodegradation 9:311–318

    Article  CAS  Google Scholar 

  • Foyer CH, Descourvières P, Kunert KJ (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  • Froment MA, Turley D, Collings LV (2000) Effect of nutrition on growth and oil quality in linseed. Tests Agrochem Cultiv 21:29–30

    CAS  Google Scholar 

  • Gardarin A, Chédin S, Lagniel G, Aude JC, Godat E, Catty P, Labarre J (2010) Endoplasmic reticulum is a major target of cadmium toxicity in yeast. Mol Microbiol 76:1034–1048

    Article  CAS  Google Scholar 

  • Gill SS, Khan NA, Tuteja N (2011) Differential cadmium stress tolerance in five Indian mustard (Brassica juncea L.) cultivars: an evaluation of the role of antioxidant machinery. Plant Signal Behav 6:293–300

    Article  CAS  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research, 2nd edn. J. Wiley and Sons, New York

    Google Scholar 

  • Gond DP, Singh S, Pal A, Tewary BK (2013) Growth, yield and metal residues in Solanum melongena grown in flyash amended soil. J Environ Biol 34:539–544

    CAS  Google Scholar 

  • Hasan MK, Ahammed GJ, Yin L, Shi K, Xia X, Zhou Y, Yu J, Zhou J (2015) Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front Plant Sci 6:601

    Article  Google Scholar 

  • Hell R, Hillebrand H (2001) Plant concepts for mineral acquisition and allocation. Curr Opin Biotechnol 12:161–168

    Article  CAS  Google Scholar 

  • Hiscox JD, Israelstam GF (1979) A method for the extraction of chlorophyll from leaf tissue without maceration. Can J Bot 57:1332–1334

    Article  CAS  Google Scholar 

  • Holland S, Lodwig E, Sideri T, Reader T, Clarke I, Gkargkas K, Hoyle DC, Delneri D, Oliver SG, Avery SV (2007) Application of the comprehensive set of heterozygous yeast deletion mutants to elucidate the molecular basis of cellular chromium toxicity. Genome Biol 8:R268

    Article  CAS  Google Scholar 

  • Holthusen D, Peth S, Horn R (2010) Impact of potassium concentration and matric potential on soil stability derived from rheological parameters. Soil Tillage Res 111:75–85. https://doi.org/10.1016/j.still.2010.08.002

    Article  Google Scholar 

  • Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plant 16:259–272

    Article  CAS  Google Scholar 

  • Hsiao TC, Läuchli A (1986) Role of potassium in plant-water relations. In: Tinker B, Läuchli A (eds) Advances in Plant Nutrition, 2nd edn. Praeger, New York, pp 281–312

    Google Scholar 

  • Humble GD, Hsiao TC (1970) Light-dependent influx and efflux of potassium of guard cells during stomatal opening and closing. Plant Physiol 46:483–487

    Article  CAS  Google Scholar 

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43:1274–1279

    Article  CAS  Google Scholar 

  • Keller T, Schwanger H (1977) Air pollution and ascorbic acid. European J Pathol 7:338–350

    Article  CAS  Google Scholar 

  • Ko BG (2000). Effects of flyash and gypsum application on soil improvement and rice cultivation. Ph.D. Thesis. Gyeongsang National University, Chinju (In Korean with English summary)

  • Lazár D (2015) Parameters of photosynthetic energy partitioning. J Plant Physiol 175:131–147

    Article  CAS  Google Scholar 

  • Liu J, Li K, Xu J, Zhang Z, Ma T, Lu X, Yang J, Zhu Q (2003) Lead toxicity, uptake and translocation in different rice cultivars. Plant Sci 165:793–802

    Article  CAS  Google Scholar 

  • Marschner H (2002) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Marschner P (2012) Mineral nutrition of higher plants, 3rd edn. Academic Press, London

    Google Scholar 

  • McGrath SP, Zhao FJ (1996) Sulphur uptake, yield responses and the interactions between nitrogen and sulphur in winter oilseed rape (Brassica napus). J Agric Sci 126:53–62

    Article  CAS  Google Scholar 

  • McLaughlin MJ, Parker DR, Clarke JM (1999) Metals and micronutrients-food safety issues. Field Crops Res 60:143–163

    Article  Google Scholar 

  • Mekki BB (2013) Yield and quality traits of some canola varieties grown in newly reclaimed sandy soils in Egypt. World Appl Sci J 25:258–263

    CAS  Google Scholar 

  • Mengel K, Arneke WW (1982) Effect of potassium on water potential, the osmotic potential, and cell elongation in leaves of Phaseolus vulgaris. Physiol Plant 54:402–408

    Article  CAS  Google Scholar 

  • Mengel K, Kirkby EA (1982) Potassium in agriculture. In: Munson RD (ed) Principles of plant nutrition. ASA-CSSA-SSSA, Madison, pp 417–428

    Google Scholar 

  • Moorby J, Besford RT (1983) Mineral nutrition and growth. In: Lauchli A, Bieleski RL (eds) Encyclopedia of plant physiology, vol 15B. Springer, Verlag, New York, pp 481–527

    Google Scholar 

  • Morrison WR, Smith LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride methanol. J Lipid Res 5:600–608

    CAS  Google Scholar 

  • Mudgal V, Madaan N, Mudgal A, Singh R, Mishra S (2010) Effect of toxic metals on human health. Open Nutraceuticals J 3:94–99

    CAS  Google Scholar 

  • Navari-Izzo F, Quartacci MF (2001) Phytoremediation of metals. Tolerance mechanisms against oxidative stress. Minerva Biotech 13:73–83

    Google Scholar 

  • Pandey VC, Singh JS, Kumar A, Tewari DD (2010) Accumulation of heavy metals by chickpea grown in fly ash treated soil: effects on antioxidants. Clean Soil Air Water 38:1116–1123

    Article  CAS  Google Scholar 

  • Perronnet K, Schwartz C, Morel JL (2003) Distribution of cadmium and zinc in the hyperaccumulator Thlaspi caerulescens grown on multi-contaminated soil. Plant Soil 249:19–25

    Article  CAS  Google Scholar 

  • Ram LC, Jha SK, Tripathi RC, Masto RE, Selvi VA (2008) Remediation of fly ash landfills through plantation. Remediat J 18:71–90

    Article  Google Scholar 

  • Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Opin Plant Biol 3:188–195

    Article  CAS  Google Scholar 

  • Schmit JN (1981) Le calcium dans le cellule generatince en mita. Etude dans le tubo pollinique ch germination due Clivia nobilis Lindll (Amaryllidaceae) C.R. Acad. Sci. Ser. (III), 293:755-760. In: Marschner H (ed) Mineral nutrition of higher plants, 2nd edn ed. 2002. Academic Press, London

  • Scholnick S, Keren N (2006) Metal homeostasis in cyanobacteria and chloroplasts. Balancing benefits and risks to the photosynthetic apparatus. Plant Physiol 141:805–810

    Article  CAS  Google Scholar 

  • Schroeder D (1978) Structure and weathering of potassium containing minerals. Proc 11th Congr. IntPotash Inst, Berne, pp 43-63

  • Seo GS, Jo JS, Choi CY (1986) The effect of fertilization level on the growth and oil quality in sesame (Sesamum indicum L.). Korean J Crop Sci 31:24–29

    Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    Article  CAS  Google Scholar 

  • Sharma A, Sainger M, Dwivedi S, Srivastava S, Tripathi RD, Singh RP (2010) Genotypic variation in Brassica juncea (L.) Czern. cultivars in growth, nitrate assimilation, antioxidant responses and phytoremediation potential during cadmium stress. J Environ Biol 31:773–780

    CAS  Google Scholar 

  • Singh JS, Pandey VC (2013) Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields. Ecotoxicol Environ Saf 9:43–51

    Article  CAS  Google Scholar 

  • Sinha S, Rai UN, Bhatt K, Pandey K, Gupta AK (2005) Flyash induced oxidative stress and tolerance in Prosopis juliflora L. grown on different amended substrates. Environ Monit Assess 102:447–457

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    Article  CAS  Google Scholar 

  • Sumner ER, Shanmuganathan A, Sideri TC, Willetts SA, Houghton JE, Avery SV (2005) Oxidative protein damage causes chromium toxicity in yeast. Microbiology 151:1939–1948

    Article  CAS  Google Scholar 

  • Tamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 4:252–267

    Article  CAS  Google Scholar 

  • Tester M, Blatt MR (1989) Direct measurement of K+ channels in thylakoid membranes by incorporation of vesicles into planar lipid bilayers. Plant Physiol 91:249–252

    Article  CAS  Google Scholar 

  • Van Olphen H (1977) An introduction to clay colloid chemistry, 2nd edn. Wiley Interscience, New York

    Google Scholar 

  • Verkleij JA, Schat H (1990) Mechanisms of metal tolerance in higher plants. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, pp 179–194

    Google Scholar 

  • Vollmer AT, Turner FB, Straughan IR, Lyons CL (1982) Effects of coal precipitator ash on germination and early growth of desert annuals. Environ Exp Bot 22:409–413

    Article  Google Scholar 

  • Wang YL, Wei MY, Chen SJ (2008) Effects of Cr6+ on the growth and physiological and biochemical characteristics of Mentha crispata Schrad. J Anhui Agric Sci 36:7100–7102

    CAS  Google Scholar 

  • Wani W, Masoodi KZ, Zaid A, Wani SH, Shah F, Meena VS, Mosa KA (2018) Engineering plants for heavy metal stress tolerance. Rend Lincei Scienze Fisiche e Nat 29:709–723

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Eochim Cosmochim Acta 59:1217–1232

    Article  CAS  Google Scholar 

  • Wong MH, Bradshaw AD (1981) A comparison of the toxicity of heavy metals, using root elongation of rye grass Lolium perenne. New Phytol 91:255–261

    Article  Google Scholar 

  • Wong JWC, Wong MH (1990) Effects of fly ash on yields and elemental composition of two vegetables, Brassica parachinensis and B. chinensis. Agric Ecosyst Environ 30:251–264

    Article  CAS  Google Scholar 

Download references

Funding

The author Farha Ashfaque gratefully acknowledges the award of Junior Research Fellowship by the CSIR-UGC, New Delhi with Ref. No. 660/(CSIR-UGC NET DEC. 2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farha Ashfaque.

Additional information

Responsible editor: Elena Maestri

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashfaque, F., Inam, A. Interactive effect of potassium and flyash: a soil conditioner on metal accumulation, physiological and biochemical traits of mustard (Brassica juncea L.). Environ Sci Pollut Res 26, 7847–7862 (2019). https://doi.org/10.1007/s11356-019-04243-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04243-w

Keywords

Navigation