Skip to main content
Log in

Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO2 nanotube arrays

  • Appropriate Technologies to Combat Water Pollution
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Atrazine, one of the most widespread herbicides in the world, is considered as an environmental estrogen and has potential carcinogenicity. In this study, atrazine was degraded on boron-fluorine co-doped TiO2 nanotube arrays (B, F-TiO2 NTAs), which had similar morphology with the pristine TiO2 NTAs. The structure and morphology of TiO2 nanotube samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-visible diffuse reflectance spectroscopy (DRS). It showed that the decoration of fluorine and boron made both the absorption in the visible region enhanced and the band edge absorption shifted. The efficiency of atrazine degradation by B, F-TiO2 NTAs through photoelectrocatalysis was investigated by current, solution pH, and electrolyte concentration, respectively. The atrazine removal rate reached 76% through photoelectrocatalytic reaction by B, F-TiO2 NTAs, which was 46% higher than that under the photocatalysis process. Moreover, the maximum degradation rate was achieved at pH of 6 in 0.01 M of Na2SO4 electrolyte solution under a current of 0.02 A and visible light for 2 h in the presence of B, F-TiO2 NTAs. These results showed that B, F-TiO2 NTAs exhibit remarkable photoelectrocatalytic activity in degradation of atrazine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aquino JM, Miwa DW, Rodrigo MA, Motheo AJ (2017) Treatment of actual effluents produced in the manufacturing of atrazine by a photo-electrolytic process. Chemosphere 172:185–192

    Article  CAS  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  • Bessegato GG, Cardoso JC, Zanoni MVB (2015) Enhanced photoelectrocatalytic degradation of an acid dye with boron-doped TiO 2 nanotube anodes. Catal Today 240:100–106

    Article  CAS  Google Scholar 

  • Borràs N, Oliver R, Arias C, Brillas E (2010) Degradation of atrazine by electrochemical advanced oxidation processes using a boron-doped diamond anode. J Phys Chem A 114:6613–6621

    Article  Google Scholar 

  • Candal RJ, Zeltner WA, Anderson MA (2000) Effects of pH and applied potential on photocurrent and oxidation rate of saline solutions of formic acid in a photoelectrocatalytic reactor. Environ Sci Technol 34:3443–3451

    Article  CAS  Google Scholar 

  • Çavaş T, Könen S (2007) Detection of cytogenetic and DNA damage in peripheral erythrocytes of goldfish (Carassius auratus) exposed to a glyphosate formulation using the micronucleus test and the comet assay. Mutagenesis 22:263–268

    Article  Google Scholar 

  • Cheng X, Cheng Q, Deng X, Wang P, Liu H (2016) A facile and novel strategy to synthesize reduced TiO2 nanotubes photoelectrode for photoelectrocatalytic degradation of diclofenac. Chemosphere 144:888–894

    Article  CAS  Google Scholar 

  • Christensen PA, Curtis TP, Egerton TA, Kosa SAM, Tinlin JR (2003) Photoelectrocatalytic and photocatalytic disinfection of E. coli suspensions by titanium dioxide. Applied Catalysis B Environmental 41:371–386

    Article  CAS  Google Scholar 

  • Ding X, Wang S, Shen W, Mu Y, Wang L, Chen H, Zhang L (2017) Fe@Fe2O3 promoted electrochemical mineralization of atrazine via a triazinon ring opening mechanism. Water Res 112:9–18

    Article  CAS  Google Scholar 

  • El-Sheekh MM, Kotkat HM, Hammouda OH (1994) Effect of atrazine herbicide on growth, photosynthesis, protein synthesis, and fatty acid composition in the unicellular green alga Chlorella kessleri. Ecotoxicology & Environmental Safety 29:349–358

    Article  CAS  Google Scholar 

  • Fraga LE, Anderson MA, Beatriz MLPMA, Paschoal FMM, Romão LP, Zanoni MVB (2009) Evaluation of the photoelectrocatalytic method for oxidizing chloride and simultaneous removal of microcystin toxins in surface waters. Electrochim Acta 54:2069–2076

    Article  CAS  Google Scholar 

  • Frontistis Z, Daskalaki VM, Katsaounis A, Poulios I, Mantzavinos D (2011) Electrochemical enhancement of solar photocatalysis: degradation of endocrine disruptor bisphenol-A on Ti/TiO2 films. Water Res 45:2996–3004

    Article  CAS  Google Scholar 

  • Gregg BA (2003) Excitonic solar cells: the physics and chemistry of organic-based photovoltaics. ACS Symp Ser 844:243–257

    Article  CAS  Google Scholar 

  • Hayes TB, Collins A, Lee M, Mendoza M, Noriega N, Stuart AA, Vonk A (2002) Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proc Natl Acad Sci U S A 99:5476–5480

    Article  CAS  Google Scholar 

  • He HY (2016) Facile synthesis of ultrafine CuS nanocrystalline/TiO 2: Fe nanotubes hybrids and their photocatalytic and Fenton-like photocatalytic activities in the dye degradation. Microporous Mesoporous Mater 227:31–38

    Article  CAS  Google Scholar 

  • He HY, Lu J (2017) Highly photocatalytic activities of magnetically separable reduced graphene oxide-CoFe2O4 hybrid nanostructures in dye photodegradation. Sep Purif Technol 172:374–381

    Article  CAS  Google Scholar 

  • He HY, Huang JF, Cao LY, Wu JP (2010) Photodegradation of methyl orange aqueous on MnWO 4 powder under different light resources and initial pH. Desalination 252:66–70

    Article  CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    Article  CAS  Google Scholar 

  • Hsu HT, Chen SS, Tang YF, Hsi HC (2013) Enhanced photocatalytic activity of chromium(VI) reduction and EDTA oxidization by photoelectrocatalysis combining cationic exchange membrane processes. J Hazard Mater 248-249:97–106

    Article  CAS  Google Scholar 

  • Kaneco S, Katsumata H, Suzuki T, Ohta K (2006) Titanium dioxide mediated photocatalytic degradation of dibutyl phthalate in aqueous solution—kinetics, mineralization and reaction mechanism. Chem Eng J 125:59–66

    Article  CAS  Google Scholar 

  • Kim DH, Anderson MA (1994) Photoelectrocatalytic degradation of formic acid using a porous titanium dioxide thin-film electrode. Environmental Science & Technology 28:479–483

    Article  CAS  Google Scholar 

  • Komtchou S, Dirany A, Drogui P, Lafrance P (2016) Application des procédés d’oxydation avancée pour le traitement des eaux contaminées par les pesticides – revue de littérature. Revue Des Sciences De Leau 29:231

    Article  Google Scholar 

  • Ku Y, Lee YC, Wang WY (2006) Photocatalytic decomposition of 2-chlorophenol in aqueous solution by UV/TiO2 process with applied external bias voltage. J Hazard Mater 138:350–356

    Article  CAS  Google Scholar 

  • Li FB, Li XZ, Hou MF, Cheah KW, Choy WCH (2013) Enhanced photocatalytic activity of Ce 3+ –TiO 2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control. Water Sci Technol 67:2845–2849

    Article  Google Scholar 

  • Liu H, Cao X, Liu G, Wang Y, Zhang N, Li T, Tough R (2013) Photoelectrocatalytic degradation of triclosan on TiO2 nanotube arrays and toxicity change. Chemosphere 93:160–165

    Article  CAS  Google Scholar 

  • Liu Y, Liu L, Shan J, Zhang J (2015) Electrodeposition of palladium and reduced graphene oxide nanocomposites on foam-nickel electrode for electrocatalytic hydrodechlorination of 4-chlorophenol. J Hazard Mater 290:1–8

    Article  CAS  Google Scholar 

  • Manera MG, Taurino A, Catalano M, Rella R, Caricato AP, Buonsanti R, Cozzoli PD, Martino M (2012) Enhancement of the optically activated NO 2 gas sensing response of brookite TiO 2 nanorods/nanoparticles thin films deposited by matrix-assisted pulsed-laser evaporation. Sensors Actuators B Chem 161:869–879

    Article  CAS  Google Scholar 

  • Mozia S, Tomaszewska M, Morawski AW (2006) Application of an ozonation–adsorption–ultrafiltration system for surface water treatment. Desalination 190:308–314

    Article  CAS  Google Scholar 

  • Mtyopo MB (2004) Optimization of a manufacturing process for atrazine with a focus on waste minimization. Faculty of Applied Science. Port Elizabeth Technikon, Port Elizabeth, pp 105–107

  • Nakata K, Fujishima A (2012) TiO 2 photocatalysis: design and applications. J Photochem Photobiol C Photochem Rev 13:169–189

    Article  CAS  Google Scholar 

  • Oturan N, Brillas E, Oturan MA (2012) Unprecedented total mineralization of atrazine and cyanuric acid by anodic oxidation and electro-Fenton with a boron-doped diamond anode. Environ Chem Lett 10:165–170

    Article  CAS  Google Scholar 

  • Palmas S, Pozzo AD, Mascia M, Vacca A, Ricci PC (2012) Sensitization of TiO2 nanostructures with Coumarin 343. Chem Eng J 211-212:285–292

    Article  CAS  Google Scholar 

  • Park JH, Noh JH, Han BS, Shin SS, Park IJ, Kim DH, Hong KS (2012) Influence of niobium doping in hierarchically organized titania nanostructure on performance of dye-sensitized solar cells. J Nanosci Nanotechnol 12:5091–5095

    Article  CAS  Google Scholar 

  • Pathak RK, Dikshit AK (2011) Various techniques for atrazine removal, International Conference on Life Science and Technology(iclst

  • Ruiz MJ, Marzin D (1997) Genotoxicity of six pesticides by Salmonella mutagenicity test and SOS chromotest. Mutat Res 390:245–255

    Article  CAS  Google Scholar 

  • Saglio P, Trijasse S (1998) Behavioral responses to atrazine and diuron in goldfish. Arch Environ Contam Toxicol 35:484–491

    Article  CAS  Google Scholar 

  • Schmuki P (2005): Dye-sensitized anodic TiO2 nanotubes

  • Shayegan Z, Lee CS, Haghighat F (2018) TiO 2 photocatalyst for removal of volatile organic compounds in gas phase - a review. Chem Eng J 334

  • Szkoda M, Siuzdak K, Lisowska-Oleksiak A, Karczewski J, Ryl J (2015) Facile preparation of extremely photoactive boron-doped TiO 2 nanotubes arrays. Electrochem Commun 60:212–215

    Article  CAS  Google Scholar 

  • Varghese OK, Gong D, Paulose M, Ong KG, Dickey EC, Grimes CA (2003) Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv Mater 15:624–627

    Article  CAS  Google Scholar 

  • Ventura BDC, Marin-Morales MA (2008) Mutagenic and genotoxic effects of the atrazine herbicide in Oreochromis niloticus (Perciformes, Cichlidae) detected by the micronuclei test and the comet assay. Pestic Biochem Physiol 90:42–51

    Article  CAS  Google Scholar 

  • Xing J, Liang H, Cheng X, Yang H, Xu D, Gan Z, Luo X, Zhu X, Li G (2018a) Combined effects of coagulation and adsorption on ultrafiltration membrane fouling control and subsequent disinfection in drinking water treatment. Environ Sci Pollut Res

  • Xing J, Wang H, Cheng X, Tang X, Luo X, Wang J, Wang T, Li G, Liang H (2018b) Application of low-dosage UV/chlorine pre-oxidation for mitigating ultrafiltration (UF) membrane fouling in natural surface water treatment. Chem Eng J 344:62–70

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang H, Xu Y, Wang Y (2003) Europium doped nanocrystalline titanium dioxide: preparation, phase transformation and photocatalytic properties. J Mater Chem 13:2261–2265

    Article  CAS  Google Scholar 

  • Zhuang HF, Lin CJ, Lai YK, Sun L, Li J (2007) Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ Sci Technol 41:4735–4740

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 51509044), the Fundamental Research Funds for the Central Universities (HEUCMF180208) and the International Exchange Program of Harbin Engineering University for Innovation-oriented Talents Cultivation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-nan Zhu.

Additional information

Responsible editor: Suresh Pillai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hx., Zhu, Ln. & Guo, Fq. Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO2 nanotube arrays. Environ Sci Pollut Res 26, 33847–33855 (2019). https://doi.org/10.1007/s11356-018-2569-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2569-y

Keywords

Navigation