Skip to main content
Log in

Photocatalytic activity of BiVO4@TiO2 composite nanorods arrays

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

There is an enormous demand to develop novel TiO2-based photocatalytic material with higher photocatalytic activity due to its great performance in wastewater treatment. However, the exaggerated band gap of 3.2 eV for TiO2, which only absorbs the energy in the UV region, limits its application in wastewater treatment. In recent years, BiVO4 as a photocatalytic material has drawn considerable attention because of its appropriate ban gap of ~ 2.4 eV that allows a strong absorption in visible light region, excellent intrinsic charge transport properties, and suitable band location for recombination with other photocatalysts. In this paper, BiVO4@TiO2 nanorod arrays (NRAs) were fabricated on fluorine-doped tin oxide substrates via hydrothermal method, the structure and morphology of NRAs were observed by X-ray diffraction and scanning electron microscope, and the surface element and valence states were investigated by X-ray photoelectron spectroscopy. To confirm the improvement of photocatalytic performance after loading BiVO4 particles, methylene blue degradation test for before and after loading BiVO4 particle samples was carried out. The result indicates that the BiVO4@TiO2 NRAs sample shows a better degradation property than the single one, and the optimal parameter is 10 h with the concentration of 0.2 M. The capacity of photon carrier generation and electron–hole pairs migration was also investigated via UV–Vis diffuse reflection spectroscopy and photoluminescence spectra. The result illustrates that the absorption region is broadened by loading BiVO4 and the recombination of carriers is restrained efficiently, attributing to the transfer between TiO2 and BiVO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or used during the study appear in the submitted article. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Malathi, J. Madhavan, M. Ashokkumar, P. Arunachalam, Appl. Cata. A Gen. 555, 47–74 (2018). https://doi.org/10.1016/j.apcata.2018.02.010

    Article  CAS  Google Scholar 

  2. Q.J. Shi, Z.J. Li, L. Chen, X.L. Zhang, W.H. Han, M.Z. Xie, J.L. Yang, L.Q. Jing, Appl. Catal. B Environ. 244, 641–649 (2019)

    Article  CAS  Google Scholar 

  3. G.V. Khade, N.L. Gavade, M.B. Suwarnkar, M.J. Dhanavade, K.D. Sonawane, K.M. Garadkar, J. Mater. Sci.: Mater. Electron. 28(15), 11002–11011 (2017)

    CAS  Google Scholar 

  4. T. Wang, T.Y. Sun, J.H. Xu, H. Xiao, Z.G. Zhang, H.Q. Bian, H.H. Ding, J. Mater. Sci.: Mater. Electron. 32(16), 21083–21092 (2021)

    CAS  Google Scholar 

  5. Q.H. Li, M. Dong, R. Li, Y.Q. Cui, G.X. Xie, X.X. Wang, Y.Z. Long, Carbohydr. Polym. 253, 117200 (2021)

    Article  CAS  Google Scholar 

  6. C.F. Carbuloni, J.E. Savoia, J.S.P. Santos, C.A.A. Pereira, R.G. Marques, V.A.S. Ribeiro, A.M. Ferrari, J. Environ. Manage. 262, 110347 (2020)

    Article  CAS  Google Scholar 

  7. Z.Y. Duan, X.J. Zhao, L.M. Chen, J. Environ. Chem. Eng. 9(1), 104628 (2021)

    Article  CAS  Google Scholar 

  8. R. Tong, X.N. Wang, X.L. Zhou, Q.Y. Liu, H.B. Wang, X.N. Peng, X. Liu, Z.H Zhang, H. Wang, P.D. Lund, J. Hydrogen Energy 42(8), 5496–5504 (2017). https://doi.org/10.1016/j.ijhydene.2016.08.168

    Article  CAS  Google Scholar 

  9. H. Zhang, Y.M. Li, Y. Wu, Y.J. Wang, Z.P. Lin, D.D. Cao, Q.Y. Wang, Ceram. Int. 46(9), 13433–13441 (2020). https://doi.org/10.1016/j.ceramint.2020.02.126

    Article  CAS  Google Scholar 

  10. M.D. Sun, Z,M. Zhang, Q.J. Shi, J.L. Yang, M.Z. Xie, W.H. Han, Chin. Chem. Lett. 32(8), 2419–2422 (2021)

    Article  CAS  Google Scholar 

  11. M. Mehta, S. Krishnamurthy, S. Basu, T.P. Nixon, A.P. Singh, Mater. Today Chem. 17, 100283 (2020). https://doi.org/10.1016/j.mtchem.2020.100283

    Article  CAS  Google Scholar 

  12. A.H. Shah, M.A. Rather, Mater. Today: Proc. 44, 482–488 (2021)

    CAS  Google Scholar 

  13. J.L. Jia, D.M. Liu, S.X. Wang, H.R. Li, J.X. Ni, X.B. Li, J.Y. Tian, Q. Wang, Sep. Purif. Technol. 253, 117510 (2020). https://doi.org/10.1016/j.seppur.2020.117510

    Article  CAS  Google Scholar 

  14. Q.S. Shang, S.X. Gao, G.B. Dai, J.T. Ren, D.Y. Wang, Surf. Interfaces 18, 100426 (2020). https://doi.org/10.1016/j.surfin.2019.100426

    Article  CAS  Google Scholar 

  15. J. Zhang, Q.T. Li, S.Q. Li, Y. Wang, C. Ye, J. Power Sources 268, 941–949 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.139

    Article  CAS  Google Scholar 

  16. Z.X. Jin, Y.L. Wang, S.X. Chen, G. Li, L.L. Wang, H.C. Zhu, X.T. Zhang, Y.C. Liu, RSC Adv. 6(13), 10450–10455 (2016)

    Article  CAS  Google Scholar 

  17. J. Xie, W. Wen, Q. Jin, X.B. Xiang, J.M. Wu, New J. Chem. 43(28), 11050–11056 (2019)

    Article  CAS  Google Scholar 

  18. S.P. Hong, J. Park, S.M. Bhat, S. Lee, T.H. Lee, S.A. Lee, K. Hong, M.J. Choi, M. Shokouhimehr, H. W. Jang, Cryst. Growth Des. 18(11), 6504–6512 (2018)

    Article  CAS  Google Scholar 

  19. A.R. Nanakkal, L.K. Alexander, J. Mater. Sci. 52(13), 7997–8006 (2017)

    Article  CAS  Google Scholar 

  20. R. Wang, J. Bai, Y.P. Li, Q.Y. Zeng, J.H. Li, B.X. Zhou, Nanomicro Lett. 9(2), 14 (2017)

    Google Scholar 

  21. Z.X. Wang, S.B. Huang, Z.C. Jian, J.Z. Yin, Z.B. Fei, Y.Q. Zhang, Res. Chem. Intermed. 42(5), 4147–4159 (2016)

    Article  CAS  Google Scholar 

  22. J.J. Sun, X.Y. Li, Q.D. Zhao, M.O. Tadé, S.M. Liu, J. Mater. Chem. A 3(43), 21655–21663 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant No.11874124), the Science and Technology Project of Guangdong Province (Grant No. 2017B010127002), and the Joint Training Demonstration Base Project of Guangdong Province Graduate student in 2016.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The conception of the study was contributed by WZ and WX. Material preparation, data collection, and analysis were performed by JL, CR, and SZ. The data collection and analysis were performed (XRD, XPS) by XS and ZH. The first draft of the manuscript was written by JL. The analysis with constructive discussions and manuscript writing guide were performed (XRD, XPS) by ZF and YC. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Zhang.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Zhang, W., Xie, W. et al. Photocatalytic activity of BiVO4@TiO2 composite nanorods arrays. J Mater Sci: Mater Electron 33, 12426–12435 (2022). https://doi.org/10.1007/s10854-022-08200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08200-1

Navigation