Skip to main content
Log in

High removal performance of a magnetic FPA90-Cl anion resin for bromate and coexisting precursors: kinetics, thermodynamics, and equilibrium studies

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, the FPA90-Cl resin was magnetized with supported Fe3O4 particles using a chemical co-precipitation method and its removal performance of bromate and coexisting precursors was explored. The magnetized FPA90-Cl resin was structurally characterized by SEM, FT-IR, and XRD. The effects of the initial concentrations, temperature, and resin dosage on bromate and bromide ion removal in drinking water were investigated using batch experiments. The magnetized FPA90-Cl resin exhibited a high removal efficiency for bromate and bromide ions at three initial concentrations, and the residual bromate concentrations were under the maximum contaminant level (MCL) of 10 μg L−1 after 80 min. The adsorption data of bromate and bromide ion could be well described by a pseudo-first-order kinetic model (R2 ˃ 0.98). The bromate removal alone was further studied by varying the initial solution pH, temperature, and competitive anions. The results showed that the magnetized FPA90-Cl resin could be used over a wide pH range (4.0–9.0). The maximum sorption capacity of the magnetized FPA90-Cl resin for bromate reached 132.83 mg g−1 at 298 K. The Freundlich and Redlich-Peterson isotherm models fit the bromate adsorption equilibrium better (R2 ˃ 0.99) than the Langmuir isotherm model (R2 ˃ 0.98). The thermodynamic analysis showed that the bromate adsorption process was endothermic. The negative ΔG and positive ΔS indicated that the process was spontaneous and that randomness increased after adsorption, respectively. The competition of coexisting anions with bromate was in the order of SO42− > CO32− > Cl > NO3 > HCO3 > PO43−. Additionally, the magnetized FPA90-Cl resin could maintain a high bromate and bromide ion adsorption capacity after five cycles of regeneration by a 0.1 M NaCl solution.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Asami M, Aizawa T, Morioka T, Nishijima W, Tabata A, Magara Y (1999) Bromate removal during transition from new granular activated carbon (GAC) to biological activated carbon (BAC). Water Res 33:2797–2804

    Article  CAS  Google Scholar 

  • Awual R, Jyo A (2009) Rapid column-mode removal of arsenate from water by crosslinked poly(allylamine) resin. Water Res 43:1229–1236

    Article  CAS  Google Scholar 

  • Bhatnagar A, Yanghun C, Yeojoon Y, Shin YS, Byonghun J, Kang JW (2009) Bromate removal from water by granular ferric hydroxide (GFH). J Hazard Mater 170:134–140

    Article  CAS  Google Scholar 

  • Bissen M, Gremm T, Köklü Ü, Frimmel FH (2010) Use of the anion-exchange resin amberlite IRA-93 for the separation of arsenite and arsenate in aqueous samples. CLEAN Soil Air Water 28:41–46

    Google Scholar 

  • Butler R, Godley A, Lytton L, Cartmell E (2005) Bromate environmental contamination: review of impact and possible treatment. Crit Rev Environ Sci Technol 35:193–217

    Article  CAS  Google Scholar 

  • Chabani M, Amrane A, Bensmaili A (2006) Kinetic modelling of the adsorption of nitrates by ion exchange resin. Chem Eng J 125:111–117

    Article  CAS  Google Scholar 

  • Chellam S (2000) Effects of nanofiltration on trihalomethane and haloacetic acid precursor removal and speciation in waters containing low concentrations of bromide ion. Environ Sci Technol 34:1813–1820

    Article  CAS  Google Scholar 

  • Chen H, Xu Z, Wan H, Zheng J, Yin D, Zheng S (2010) Aqueous bromate reduction by catalytic hydrogenation over Pd/Al2O3 catalysts. Appl Catal B Environ 96:307–313

    Article  CAS  Google Scholar 

  • Chen R, Yang Q, Zhong Y, Li X, Liu Y, Li XM, Du WX, Zeng GM (2014) Sorption of trace levels of bromate by macroporous strong base anion exchange resin: influencing factors, equilibrium isotherms and thermodynamic studies. Desalination 344:306–312

    Article  CAS  Google Scholar 

  • Chitrakar R, Makita Y, Sonoda A, Hirotsu T (2011a) Adsorption of trace levels of bromate from aqueous solution by organo-montmorillonite. Appl Clay Sci 51:375–379

    Article  CAS  Google Scholar 

  • Chitrakar R, Sonoda A, Makita Y, Hirotsu T (2011b) Calcined Mg-Al layered double hydroxides for uptake of trace levels of bromate from aqueous solution. Ind Eng Chem Res 50:9280–9285

    Article  CAS  Google Scholar 

  • Daifullah AA, Yakout SM, Elreefy SA (2007) Adsorption of fluoride in aqueous solutions using KMnO4 -modified activated carbon derived from steam pyrolysis of rice straw. J Hazard Mater 147:633–643

    Article  CAS  Google Scholar 

  • Das DP, Das J, Parida K (2003) Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution. J Colloid Interface Sci 261:213–220

    Article  CAS  Google Scholar 

  • Ding L, Deng H, Han X, Dong L, Wang P, Ridder DD (2010) Adsorption characteristics of phosphate from aqueous solutions by sponge iron: isotherm, kinetics, and thermodynamics studies. Fresenius Environ Bull 19:2548–2561

    CAS  Google Scholar 

  • Ding L, Deng H, Wu C, Xu H (2012a) Affecting factors, equilibrium, kinetics and thermodynamics of bromide removal from aqueous solutions by MIEX resin. Chem Eng J 181-182:360–370

    Article  CAS  Google Scholar 

  • Ding L, Li Q, Zhou D, Cui H, An H, Zhai J (2012b) Modification of glassy carbon electrode with polyaniline/multi-walled carbon nanotubes composite: application to electro-reduction of bromate. J Electroanal Chem 668:44–50

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Gordon G, Gauw RD, Emmert GL, Walters BD, Bubnis B (2002) Chemical reduction methods for bromate ion removal. J Am Water Works Assoc 94:91–98

    Article  CAS  Google Scholar 

  • Han Q, Wang H, Dong W, Liu T, Yin Y (2014) Suppression of bromate formation in ozonation process by using ferrate(VI): batch study. Chem Eng J 236:110–120

    Article  CAS  Google Scholar 

  • Hatzistavros VS, Koulouridakis PE, Aretaki II, Kallithrakaskontos NG (2004) Bromate determination in water after membrane complexation and total reflection X-ray fluorescence analysis. Anal Chem 76:4315–4319

    Article  Google Scholar 

  • He S, Zhang D, Gu L, Zhang S, Yu X (2012) Bromate adsorption using Fe-pillared bentonite. Environ Technol 33:2337–2344

    Article  CAS  Google Scholar 

  • Huang WJ, Cheng YL (2008) Effect of characteristics of activated carbon on removal of bromate. Sep Purif Technol 59:101–107

    Article  CAS  Google Scholar 

  • Johnson CJ, Singer PC (2004) Impact of a magnetic ion exchange resin on ozone demand and bromate formation during drinking water treatment. Water Res 38:3738–3750

    Article  CAS  Google Scholar 

  • Khambhaty Y, Mody K, Basha S, Jha B (2009) Kinetics, equilibrium and thermodynamic studies on biosorption of hexavalent chromium by dead fungal biomass of marine Aspergillus niger. Chem Eng J 145:489–495

    Article  CAS  Google Scholar 

  • Kim YS, Lee YH, An B, Choi SA, Park JH, Jurng JS, Lee SH, Choi JW (2012) Simultaneous removal of phosphate and nitrate in wastewater using high-capacity anion-exchange resin. Water Air Soil Pollut 223:5959–5966

    Article  CAS  Google Scholar 

  • Kirisits MJ, Snoeyink VL, Kruithof JC (2000) The reduction of bromate by granular activated carbon. Water Res 34:4250–4260

    Article  CAS  Google Scholar 

  • Kirisits MJ, Snoeyink VL, Inan H, Cheesanford JC, Raskin L, Brown JC (2001) Water quality factors affecting bromate reduction in biologically active carbon filters. Water Res 35:891–900

    Article  CAS  Google Scholar 

  • Li S, Yang Q, Zhong Y, Chen F, Xie T, Yao F, Sun J, Jiang C, Li X, Zeng G (2016) Adsorptive bromate removal from aqueous solution by commercial strongly basic resin impregnated with hydrated ferric oxide (HFO): kinetics and equilibrium studies. J Chem Eng Data 61:1305–1312

    Article  CAS  Google Scholar 

  • Liang D, Li Q, Cui H, Tang R, Xu H, Xie X, Zhai J (2010) Electrocatalytic reduction of bromate ion using a polyaniline-modified electrode: an efficient and green technology for the removal of BrO3 in aqueous solutions. Electrochim Acta 55:8471–8475

    Article  Google Scholar 

  • Liao XP, Shi B (2005) Adsorption of fluoride on zirconium(IV)-impregnated collagen fiber. Environ Sci Technol 39:4628–4632

    Article  CAS  Google Scholar 

  • Listiarini K, Jia TT, Sun DD, Leckie JO (2010) Hybrid coagulation-nanofiltration membrane for removal of bromate and humic acid in water. J Membr Sci 365:154–159

    Article  CAS  Google Scholar 

  • Liu Y, Jia S, Wu Q, Ran J, Zhang W, Wu S (2011) Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. Catal Commun 12:717–720

    Article  CAS  Google Scholar 

  • Liu J, Yu J, Li D, Zhang Y, Yang M (2012) Reduction of bromate in a biological activated carbon filter under high bulk dissolved oxygen conditions and characterization of bromate-reducing isolates. Biochem Eng J 65:44–50

    Article  CAS  Google Scholar 

  • Lv L, Wang Y, Wei M, Cheng J (2008) Bromide ion removal from contaminated water by calcined and uncalcined MgAl-CO3 layered double hydroxides. J Hazard Mater 152:1130–1137

    Article  CAS  Google Scholar 

  • Magazinovic RS, Nicholson BC, Mulcahy DE, Davey DE (2004) Bromide levels in natural waters: its relationship to levels of both chloride and total dissolved solids and the implications for water treatment. Chemosphere 57:329–335

    Article  CAS  Google Scholar 

  • Marhaba TF, Bengraine K (2003) Review of strategies for minimizing bromate formation resulting from drinking water ozonation. Clean Techn Environ Policy 5:101–112

    Article  CAS  Google Scholar 

  • Matos CT, Velizarov S, Reis MAM, Crespo JG (2008) Removal of bromate from drinking water using the ion exchange membrane bioreactor concept. Environ Sci Technol 42:7702–7708

    Article  CAS  Google Scholar 

  • Milmile SN, Pande JV, Karmakar S, Chakrabarti T, Bansiwal A, Biniwale RB (2011) Equilibrium isotherm and kinetic modeling of the adsorption of nitrates by anion exchange Indion NSSR resin. Desalination 276:38–44

    Article  CAS  Google Scholar 

  • Moore MM, Chen T (2006) Mutagenicity of bromate: implications for cancer risk assessment. Toxicology 221:190–196

    Article  CAS  Google Scholar 

  • Naushad M, Khan MR, Alothman ZA, Alsohaimi I, Rodriguezreinoso F, Turki TM, Ali R (2015) Removal of BrO3 from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry. Environ Sci Pollut Res 22:15853–15865

    Article  CAS  Google Scholar 

  • Peldszus S, Andrews SA, Souza R, Smith F, Douglas I, Bolton J, Huck PM (2004) Effect of medium-pressure UV irradiation on bromate concentrations in drinking water, a pilot-scale study. Water Res 38:211–217

    Article  CAS  Google Scholar 

  • Pinkernell U, Von GU (2001) Bromate minimization during ozonation: mechanistic considerations. Environ Sci Technol 35:2525–2531

    Article  CAS  Google Scholar 

  • Rauf MA, Bukallah SB, Hamour FA, Nasir AS (2008) Adsorption of dyes from aqueous solutions onto sand and their kinetic behavior. Chem Eng J 137:238–243

    Article  CAS  Google Scholar 

  • Skunik M, Kulesza PJ (2009) Phosphomolybdate-modified multi-walled carbon nanotubes as effective mediating systems for electrocatalytic reduction of bromate. Anal Chim Acta 631:153–160

    Article  CAS  Google Scholar 

  • Tang Y, Liang S, Guo H, You H, Gao N, Yu S (2013) Adsorptive characteristics of perchlorate from aqueous solutions by MIEX resin. Colloids Surf A Physicochem Eng Asp 417:26–31

    Article  CAS  Google Scholar 

  • Tong KS, Kassim MJ, Azraa A (2011) Adsorption of copper ion from its aqueous solution by a novel biosorbent Uncaria gambir: equilibrium, kinetics, and thermodynamic studies. Chem Eng J 170:145–153

    Article  CAS  Google Scholar 

  • Tran HV, Tran LD, Nguyen TN (2010) Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Mater Sci Eng C 30:304–310

    Article  CAS  Google Scholar 

  • Wang L, Zhang J, Liu J, He H, Yang M, Yu J, Ma Z, Jiang F (2010) Removal of bromate ion using powdered activated carbon. J Environ Sci 22:1846–1853

    Article  CAS  Google Scholar 

  • Wisniewski JA, Kabsch-Korbutowicz M, Kakomska S (2011) Donnan dialysis and electrodialysis as viable options for removing bromates from natural water. Desalination 281:257–262

    Article  CAS  Google Scholar 

  • Wisniewski JA, Kabsch-Korbutowicz M, Lakomska S (2014) Ion-exchange membrane processes for Br and BrO3 ion removal from water and for recovery of salt from waste solution. Desalination 342:175–182

    Article  CAS  Google Scholar 

  • Wu X, Yang Q, Xu D, Zhong Y, Luo K, Li X, Chen H, Zeng G (2013) Simultaneous adsorption/reduction of bromate by nanoscale zerovalent iron supported on modified activated carbon. Ind Eng Chem Res 52:12574–12581

    Article  CAS  Google Scholar 

  • Xie L, Shang C (2006) Effects of copper and palladium on the reduction of bromate by Fe(0). Chemosphere 64:919–930

    Article  CAS  Google Scholar 

  • Xie L, Shang C (2007) The effects of operational parameters and common anions on the reactivity of zero-valent iron in bromate reduction. Chemosphere 66:1652–1659

    Article  CAS  Google Scholar 

  • Xu C, Shi J, Zhou W, Gao B, Yue Q, Wang X (2004) Bromate removal from aqueous solutions by nano crystalline akaganeite (β-FeOOH)-coated quartz sand (CACQS). Chem Eng J 99:63–68

    Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  CAS  Google Scholar 

  • Xu C, Wang X, Shi X, Lin S, Zhu L, Che Y (2014) Bromate removal from aqueous solutions by ordered mesoporous carbon. Environ Technol 35:984–992

    Article  CAS  Google Scholar 

  • Yoon IH, Meng X, Wang C, Kim KW, Bang S, Choe E, Lippincott L (2009) Perchlorate adsorption and desorption on activated carbon and anion exchange resin. J Hazard Mater 164:87–94

    Article  CAS  Google Scholar 

  • Yu Z, Qi Y, Luo K, Wu X, Li X, Yang L, Tang W, Zeng G, Bo P (2013) Fe(II)-Al(III) layered double hydroxides prepared by ultrasound-assisted co-precipitation method for the reduction of bromate. J Hazard Mater 251:345–353

    Google Scholar 

  • Zhao D, Sheng G, Hu J, Chen C, Wang X (2011) The adsorption of Pb(II) on Mg2Al layered double hydroxide. Chem Eng J 171:167–174

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Water Resource Science and Technology Innovation Program of Guangdong Province (201624), the 111 Project (B17018). We are grateful for the technical support from the Analytical and Testing Center, South China University of Technology, Guangzhou, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengang Zhao.

Additional information

Responsible editor: Guilherme L. Dotto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Han, D., Li, Y. et al. High removal performance of a magnetic FPA90-Cl anion resin for bromate and coexisting precursors: kinetics, thermodynamics, and equilibrium studies. Environ Sci Pollut Res 25, 18001–18014 (2018). https://doi.org/10.1007/s11356-018-2029-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2029-8

Keywords

Navigation