Advertisement

Environmental Science and Pollution Research

, Volume 25, Issue 18, pp 17371–17382 | Cite as

Flux model to estimate the transport of mercury species in a contaminated lagoon (Ria de Aveiro, Portugal)

  • Teodor Stoichev
  • Emmanuel Tessier
  • Cristina Marisa R. Almeida
  • Maria Clara P. Basto
  • Vitor M. Vasconcelos
  • David Amouroux
Research Article
  • 79 Downloads

Abstract

The concentrations of dissolved and particulate inorganic mercury (IHg(II)) and methylmercury (MeHg) from the contaminated Laranjo Bay (main freshwater discharge from the Antuã River) were measured by species-specific isotope dilution during six sampling campaigns at high and at low tide. Different effective riverine concentrations were calculated, based on salinity profiles, for specific hydrological conditions. The export fluxes of total Hg and MeHg (324 and 1.24 mol year−1, respectively) from the bay to the rest of the Aveiro Lagoon are much higher than the input fluxes from the Hg source (3.9 and 0.05 mol year−1) and from the Antuã River (10.4 and 0.10 mol year−1). Resuspension of contaminated sediments from Laranjo Bay is crucial for the transport of both IHg(II) and MeHg. Methylation and/or selective enrichment into biogenic particles is responsible for the mobilization of MeHg. Sorption of dissolved IHg(II) onto suspended particles limits its export flux. This is one of the rarest examples where both speciation fluxes and partitioning of mercury are studied in a contaminated coastal environment. Despite the lower fraction of total MeHg (relative to total Hg), the contaminated lagoon may have an impact on coastal areas, particularly if change in the lagoon geometry occurs, due to sea level rise.

Keywords

Inorganic mercury Methylmercury Coastal lagoon Phytoplankton Flux Estuary 

Abbreviations

C*

Effective riverine concentration

Chl

Chlorophyll

Fin

Input flux

Fout

Export flux

Hg0

Elemental mercury

HgDISS, HgPART

Mercury, dissolved and particulate, respectively

HgTOT

Total mercury

IHg(II)DISS, IHg(II)PART

Inorganic mercury, dissolved and particulate, respectively

LOD

Limit of detection

MeHgDISS, MeHgPART

Methylmercury, dissolved and particulate, respectively

MeHgTOT

Total methylmercury

Pha

Phaeophytin

Q

Average monthly river discharge, historic data

Qday

Average daily river discharge, historic data

RD

River discharge (estimated during sampling)

SPM

Suspended particulate matter

T

Water temperature

Notes

Funding information

T. Stoichev is grateful to the Foundation of Science and Technology (Portugal) for fellowship SFRH/BPD/88675/2012, co-financed by Programa Operacional Potencial Humano (POPH) / Fundo Social Europeu (FSE). The financial support of the European SUDOE Interreg IVB Programme through the Orque-Sudoe Project is acknowledged.

Supplementary material

11356_2018_1925_MOESM1_ESM.pdf (52 kb)
ESM 1 (PDF 52 kb)
11356_2018_1925_MOESM2_ESM.pdf (462 kb)
ESM 2 (PDF 462 kb)

References

  1. Abreu SN, Pereira ME, Duarte AC (1998) The use of mathematical model to evaluate mercury accumulation in sediments and recovery time in a coastal lagoon (Ria de Aveiro, Portugal). Water Sci Technol 37:33–38CrossRefGoogle Scholar
  2. Almeida MA, Cunha MA, Alcântara F (2005) Relationship of bacterioplankton production with primary production and respiration in a shallow estuarine system (Ria de Aveiro, NW Portugal). Microbiol Res 160:315–328CrossRefGoogle Scholar
  3. Balcom PH, Hammerschmidt CR, Fitzgerald WF, Lamborg CH, O'Connor JS (2008) Seasonal distributions and cycling of mercury and methylmercury in the waters of New York/New Jersey Harbor Estuary. Mar Chem 109:1–17CrossRefGoogle Scholar
  4. Bloom NS, Moretto LM, Scopece P, Ugo P (2004) Seasonal cycling of mercury and monomethyl mercury in the Venice Lagoon (Italy). Mar Chem 91:85–99CrossRefGoogle Scholar
  5. Bouchet S, Amouroux D, Rodriguez-Gonzalez P, Tessier E, Monperrus M, Thouzeau G, Clavier J, Amice E, Deborde J, Bujan S, Grall J, Anschutz P (2013) MMHg production and export from intertidal sediments to the water column of a tidal lagoon (Arcachon Bay, France). Biogeochemistry 114:341–358CrossRefGoogle Scholar
  6. Boyle E, Collier R, Dengler AT, Edmond JM, Ng AC, Stallard RF (1974) On the chemical mass balance in estuaries. Geochim Cosmochim Acta 38:1719–1728CrossRefGoogle Scholar
  7. Bratkic A, Ogrinc N, Kotnik J, Faganeli J, Zagar D, Yano S, Tada A, Horvat M (2013) Mercury speciation driven by seasonal changes in a contaminated estuarine environment. Environ Res 125:171–178CrossRefGoogle Scholar
  8. Buck CS, Hammerschmidt CR, Bowman KL, Gill GA, Landing WM (2015) Flux of total mercury and methylmercury to the northern Gulf of Mexico from U.S. estuaries. Environ Sci Technol 49:13992–13999CrossRefGoogle Scholar
  9. Canu DM, Rosati G, Solidoro C, Heimbürger L-E, Acquavita A (2015) A comprehensive assessment of the mercury budget in the Marano-Grado Lagoon (Adriatic Sea) using a combined observational modeling approach. Mar Chem 177:742–752CrossRefGoogle Scholar
  10. Cerejo M, Dias JM (2007) Tidal transport and dispersal of marine toxic microalgae in a shallow, temperate coastal lagoon. Mar Environ Res 63:313–340CrossRefGoogle Scholar
  11. Cerqueira MA, Silva JF, Magalhães FP, Soares FM, Pato JJ (2008) Assessment of water pollution in the Antuã River basin (northwestern Portugal). Environ Monit Assess 142:325–335CrossRefGoogle Scholar
  12. Coelho JP, Pereira ME, Duarte A, Pardal MA (2005) Macroalgae response to a mercury contamination gradient in a temperate coastal lagoon (Ria de Aveiro, Portugal). Estuar Coast Shelf Sci 65:492–500CrossRefGoogle Scholar
  13. Coelho JP, Pato P, Henriques B, Picado A, Lillebø AI, Dias JM, Duarte AC, Pereira ME, Pardal MA (2014) Long-term monitoring of a mercury-contaminated estuary (Ria de Aveiro, Portugal): the effect of weather events and management in mercury transport. Hydrol Process 28:352–360CrossRefGoogle Scholar
  14. Cransveld A, Amouroux D, Tessier E, Koutrakis E, Ozturk AA, Bettoso N, Mieiro CL, Bérail S, Barre JPG, Sturaro N, Schnitzler J, Das K (2017) Mercury stable isotopes discriminate different populations of European seabass and trace potential Hg sources around Europe. Environ Sci Technol 51:12219–12228CrossRefGoogle Scholar
  15. Dias JM, Lopes JF, Dekeyser I (1999) Hydrological characterisation of Ria de Aveiro, Portugal, in early summer. Oceanol Acta 22:473–485CrossRefGoogle Scholar
  16. Dias JM, Lopes JF, Dekeyser I (2003) A numerical system to study the transport properties in the Ria de Aveiro lagoon. Ocean Dyn 53:220–231CrossRefGoogle Scholar
  17. Dias JM, Abrantes I, Rocha F (2007) Suspended particulate matter sources and residence time in a mesotidal lagoon. J Coastal Res SI50:1034–1039Google Scholar
  18. Duck RW, da Silva JF (2012) Coastal lagoons and their evolution: a hydromorphological perspective. Estuar Coast Shelf Sci 110:2–14CrossRefGoogle Scholar
  19. Fortunato AB, Rodrigues M, Dias JM, Lopes C, Oliveira A (2013) Generating inundation maps for a coastal lagoon: a case study in the Ria de Aveiro (Portugal). Ocean Eng 64:60–71CrossRefGoogle Scholar
  20. Jiann K-T, Wen L-S (2009) Intra-annual variability of distribution patterns and fluxes of dissolved trace metals in a subtropical estuary (Danshuei River, Taiwan). J Mar Syst 75:87–99CrossRefGoogle Scholar
  21. Laurier FJG, Cossa D, Gonzalez JL, Breviere E, Sarazin G (2003) Mercury transformations and exchanges in a high turbidity estuary: the role of organic matter and amorphous oxyhydroxides. Geochim Cosmochim Acta 67:3329–3345CrossRefGoogle Scholar
  22. Leitch DR, Carrie J, Lean D, Macdonald RW, Stern GA, Wang F (2007) The delivery of mercury to the Beaufort Sea of the Arctic Ocean by the Mackenzie River. Sci Total Environ 373:178–195CrossRefGoogle Scholar
  23. Liu J, Feng X, Zhu W, Zhang X, Yin R (2012) Spatial distribution and speciation of mercury and methyl mercury in the surface water of East River (Dongjiang) tributary of Pearl River Delta, South China. Environ Sci Pollut Res 19:105–112CrossRefGoogle Scholar
  24. Lopes JF, Dias JM (2007) Residual circulation and sediment distribution in the Ria de Aveiro lagoon, Portugal. J Mar Syst 68:507–528CrossRefGoogle Scholar
  25. Lorenzen C (1967) Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol Oceanogr 12:343–346CrossRefGoogle Scholar
  26. Mason RP, Fitzgerald WF, Hurley J, Hanson Jr AK, Donaghay PL, Sieburth JM (1993) Mercury biogeochemical cycling in a stratified estuary. Limnol Oceanogr 38:1227–1241CrossRefGoogle Scholar
  27. Monperrus M, Gonzales PR, Amouroux D, Alonso JIG, Donard OFX (2008) Evaluating the potential and limitations of double-spiking species-specific isotope dilution analysis for accurate quantification of mercury species in different environmental matrices. Anal Bioanal Chem 390:655–666CrossRefGoogle Scholar
  28. Navarro P, Amouroux D, Thanh ND, Rochelle-Newall E, Ouillon S, Arfi R, Van TC, Mari X, Torréton J-P (2012) Fate and tidal transport of butyltin and mercury compounds in the waters of the tropical Bach Dang Estuary (Haiphong, Vietnam). Mar Pollut Bull 64:1789–1798CrossRefGoogle Scholar
  29. Pato P, Lopes C, Válega M, Lillebø AI, Dias JM, Pereira E, Duarte AC (2008) Mercury fluxes between an impacted coastal lagoon and the Atlantic Ocean. Estuar Coast Shelf Sci 76:787–796CrossRefGoogle Scholar
  30. Pereira ME, Duarte AC, Millward GE, Vale C, Abreu SN (1998) Tidal export of particulate mercury from the most contaminated area of Aveiro’s lagoon, Portugal. Sci Total Environ 213:157–163CrossRefGoogle Scholar
  31. Pereira ME, Lillebø AI, Pato P, Válega M, Coelho JP, Lopes CB, Rodrigues S, Cachada A, Otero M, Pardal MA, Duarte AC (2009) Mercury pollution in Ria de Aveiro (Portugal): a review of the system assessment. Environ Monit Assess 155:39–49CrossRefGoogle Scholar
  32. Ramalhosa E (2002) Mercúrio na Ria de Aveiro: associações, reactividade e especiação. University of Aveiro, AveiroGoogle Scholar
  33. Ramalhosa E, Segade SR, Pereira ME, Vale C, Duarte A (2011) Monomethylmercury behaviour in sediments collected from a mercury-contaminated lagoon. Int J Environ Anal Chem 91:49–61CrossRefGoogle Scholar
  34. Reis AT, Rodrigues SM, Araújo C, Coelho JP, Pereira E, Duarte AC (2009) Mercury contamination in the vicinity of a chlor-alkali plant and potential risks to local population. Sci Total Environ 407:2689–2700CrossRefGoogle Scholar
  35. Rumbold DG, Evans DW, Niemczyk S, Fink LE, Laine KA, Howard N, Krabbenhoft DP, Zucker M (2011) Source identification of Florida Bay’s methylmercury problem: mainland runoff versus atmospheric deposition and in situ production. Estuar Coasts 34:494–513CrossRefGoogle Scholar
  36. Sharif A, Tessier E, Bouchet S, Monperrus M, Pinaly H, Amouroux D (2013) Comparison of different air–water gas exchange models to determine gaseous mercury evasion from different European coastal lagoons and estuaries. Water Air Soil Pollut 224:1606CrossRefGoogle Scholar
  37. Sharif A, Monperrus M, Tessier E, Bouchet S, Pinaly H, Rodriguez-Gonzalez P, Maron P, Amouroux D (2014) Fate of mercury species in the coastal plume of the Adour River estuary (Bay of Biscay, SW France). Sci Total Environ 496:701–713CrossRefGoogle Scholar
  38. Siudek P, Falkowska L, Brodecka A, Kowalski A, Frankowski M, Siepak J (2015) Mercury in precipitation over the coastal zone of the southern Baltic Sea, Poland. Environ Sci Pollut Res 22:2546–2557CrossRefGoogle Scholar
  39. Stoichev T, Tessier E, Amouroux D, Almeida CM, Basto MCP, Vasconcelos VM (2016) Multiple regression analysis to assess the role of plankton on the distribution and speciation of mercury in water of a contaminated lagoon. J Hazard Mater 318:711–722CrossRefGoogle Scholar
  40. Stoichev T, Espinha Marques J, Almeida CM, De Diego A, Basto MCP, Moura R, Vasconcelos VM (2017) Simple statistical models for relating river discharge with precipitation and air temperature—case study of river Vouga (Portugal). Front Earth Sci 11:203–213CrossRefGoogle Scholar
  41. UNEP (2013) United Nations environment program, global mercury assessment 2013: sources, emissions, releases and environmental transport. UNEP Chemicals Branch, GenevaGoogle Scholar
  42. Wängberg I, Munthe J, Amouroux D, Andersson ME, Fajon V, Ferrara R, Gårdfeldt K, Horvat M, Mamane Y, Melamed E, Monperrus M, Ogrinc N, Yossef O, Pirrone N, Sommar J, Sprovieri F (2008) Atmospheric mercury at Mediterranean coastal stations. Environ Fluid Mech 8:101–116CrossRefGoogle Scholar
  43. Wen L-S, Jiann K-T, Liu K-K (2008) Seasonal variation and flux of dissolved nutrients in the Danshuei Estuary, Taiwan: a hypoxic subtropical mountain river. Estuar Coast Shelf Sci 78:694–704CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Interdisciplinary Center of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoMatosinhosPortugal
  2. 2.Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les MatériauxCNRS/UNIV PAU & PAYS ADOURPauFrance
  3. 3.Faculty of SciencesUniversity of PortoPortoPortugal

Personalised recommendations