Environmental Science and Pollution Research

, Volume 25, Issue 16, pp 15492–15506 | Cite as

Effect of Cu(II) on the stability of oxyanion-substituted schwertmannite

  • Junfei Li
  • Yingying Xie
  • Guining Lu
  • Han Ye
  • Xiaoyun Yi
  • John R. Reinfelder
  • Zhang Lin
  • Zhi Dang
Research Article


Schwertmannite, a Fe(III)-oxyhydroxysulfate mineral formed in acidic (pH 3~4), iron- and sulfate-rich acid mine drainage (AMD) environments, tends to undergo phase transformations with changes in pH and redox condition, which may depend on the presence of various trace anions and cations. In the present study, the effects of Cu(II) on the stability of arsenate-, chromate-, and molybdate-substituted schwertmannite were investigated. The release of Fe(III) and sulfate from schwertmannite seems to be accelerated in the presence of Cu(II) at pH ~ 3, while Cu(II) retarded the dissolution of schwertmannite at pH ~ 5. XRD and SEM results showed that pure schwertmannite and chromate-substituted schwertmannite underwent transformation to goethite over a 2-month period, the presence of Cu(II) enhanced the stability of the mineral’s structure at both pH 3 and 5. However, the structures of arsenate- and molybdate-substituted schwertmannites showed no significant changes in the presence or absence of Cu(II) at both pH 3 and 5. During the phase transformation process, the amount of released oxyanions followed the sequence of chromate > molybdate > arsenate. Moreover, the release of arsenate and chromate from schwertmannite was retarded in the presence of Cu(II) at pH 5, whereas the release of molybdate was promoted. These results have important environmental implications for the stability of schwertmannite and its potential to immobilize contaminant trace elements under AMD conditions.


Schwertmannite Cu(II) Stability Arsenate Chromate Molybdate Phase transformation 


Funding information

This work was financially supported by the National Natural Science Foundation of China (Nos.41330639 and 41720104004), the National Key Research and Development Program of China (2017YFD0801000), the National Key Technology Support Program of China (No. 2015BAD05B05), the Tip-top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program (No. 2015TQ01Z233), and the Guangdong Innovative and Entrepreneurial Research Team Program (No. 2014ZT05N200).


  1. Acero P, Ayora C, Torrentó C, Nieto J (2006) The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim Cosmochim Acta 70:4130–4139CrossRefGoogle Scholar
  2. Antelo J, Fiol S, Gondar D, López R, Arce F (2012) Comparison of arsenate, chromate and molybdate binding on schwertmannite: surface adsorption vs anion-exchange. J Colloid Interface Sci 386:338–343CrossRefGoogle Scholar
  3. Antelo J, Fiol S, Gondar D, Pérez C, López R, Arce F (2013) Cu(II) incorporation to schwertmannite: effect on stability and reactivity under AMD conditions. Geochim Cosmochim Acta 119:149–163CrossRefGoogle Scholar
  4. Azzali E, Marescotti P, Frau F, Dinelli E, Carbone C, Capitani G, Lucchetti G (2014) Mineralogical and chemical variations of ochreous precipitates from acid sulphate waters (asw) at the Rosia Montana gold mine (Romania). Environ Earth Sci 72:3567–3584CrossRefGoogle Scholar
  5. Ball JW, Nordstrom DK (1998) Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides. J Chem Eng Data 43:895–918CrossRefGoogle Scholar
  6. Bigham JM, Schwertmann U, Carlson L, Murad E (1990) A poorly crystallized oxyhydoxysulfate of iron formed by bacterial oxidation of Fe(II) in acid mine waters. Geochim Cosmochim Acta 54:2743–2758CrossRefGoogle Scholar
  7. Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121CrossRefGoogle Scholar
  8. Burton ED, Bush RT, Sullivan LA, Mitchell DRG (2008) Schwertmannite transformation to goethite via the Fe(II) pathway: reaction rates and implications for iron-sulfate formation. Geochim Cosmochim Acta 72:4551–4564CrossRefGoogle Scholar
  9. Carlson L, Bigham JM, Schwertmann U, Kyek A, Wagner F (2002) Scavenging of As by schwertmannite and ferrihydrite from acid mine drainage: a comparison with synthetic analogues. Environ Sci Technol 36:1712–1719CrossRefGoogle Scholar
  10. Chen MQ, Lu GN, Guo CL, Yang CF, Wu JX, Huang WL, Yee N, Dang Z (2015) Sulfate migration in a river affected by acid mine drainage from the Dabaoshan mining area, South China. Chemosphere 119:734–743CrossRefGoogle Scholar
  11. Consani S, Carbone C, Salviulo G, Zorzi F, Dinelli E, Botter R, Nodari L, Badocco D, Lucchetti G (2016) Effect of temperature on the release and remobilization of ecotoxic elements in AMD colloidal precipitates: the example of Libiola copper mine, Liguria, (Italy). Environ Sci Pollution R 23(13):12900–12914CrossRefGoogle Scholar
  12. Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses. Weinheim, Wiley-VHCCrossRefGoogle Scholar
  13. Cutting RS, Coker VS, Telling ND, Kimber RL, Laan G, Pattrick RAD, Vaughan DJ, Arenholz E, Lloyd JR (2012) Microbial reduction of arsenic-doped schwertmannite by Geobacter sulfurreducens. Environ Sci Technol 46:12591–12599CrossRefGoogle Scholar
  14. Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. Wiley-Interscience, New YorkGoogle Scholar
  15. Fulladosa E, Murat JC, Martinez M, Villaescusa I (2004) Effect of pH on arsenate and arsenite toxicity to luminescent Bateria (Vibrio fischeri). Arch. Environ. ContamToxicology 46:176–182Google Scholar
  16. Gagliano WB, Brill MR, Bigham JM, Jones FS, Traina SJ (2004) Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochim Cosmochim Acta 68:2119–2128CrossRefGoogle Scholar
  17. Guo YW, Zhu ZL, Qiu YL, Zhao JF (2013) Synthesis of mesoporous Cu/Mg/Fe layered double hydroxide and its adsorption performance for arsenate in aqueous solution. J Environ Sci 25:944–953CrossRefGoogle Scholar
  18. Houng Aloune S, Kawaai T, Hiroyoshi N, Ito M (2014) Study on schwertmannite production from copper heap leach solutions and its efficiency in arsenic removal from acidic sulfate solutions. Hydrometallurgy 146-148:30–40CrossRefGoogle Scholar
  19. Houng Aloune S, Hiroyoshi N, Ito M (2015) Stability of As(V)-sorbed schwertmannite under porphyry copper mine conditions. Miner Eng 74:51–59CrossRefGoogle Scholar
  20. Jönsson J, Persson P, Sjöberg S, Lövgren L (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Appl Geochem 20:179–191CrossRefGoogle Scholar
  21. Liu YY, Mou HY, Chen LC, Mirza ZA, Liu L (2015) Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: environmental factors and effectiveness. J Hazard Mater 298:83–90CrossRefGoogle Scholar
  22. Liu LD, Wang WM, Liu L, Yu B, Zhang YX, Wu XQ, Zhang HW, Han X (2016) Catalytic activities of dissolved and Sch-immobilized Mo in H2O2 decomposition: implications for phenol oxidation under acidic conditions. Appl Catal B Environ 185:371–377CrossRefGoogle Scholar
  23. Mahadevaiah N, Venkataramani B, Prakash BSJ (2007) Restrictive entry of aqueous molybdate species into surfactant modified montmorillonite-a breakthrough curve study. Chem Mater 19:4606–4612CrossRefGoogle Scholar
  24. Mohapatra M, Sahoo SK, Anand S, Das RP (2006) Removal of As(V) by Cu(II)-, Ni(II)-, or Co(II)-doped goethite samples. J Colloid Interface Sci 298:6–12CrossRefGoogle Scholar
  25. Nagano T, Yanase N, Hanzawa Y, Takada M, Mitamura H, Sato T, Naganawa H (2011) Evaluation of the affinity of some toxic elements to schwertmannite in natural streams contaminated with acid mine drainage. Water Air Soil Pollut 216:153–166CrossRefGoogle Scholar
  26. Otero-Fariña A, Gago R, Antelo J, Fiol S, Arce F (2015) Surface complexation modelling of arsenic and copper immobilization by iron oxide precipitates derived from acid mine drainage. Bol Soc Geol Mex 67:493–508Google Scholar
  27. Paikaray S, Peiffer S (2010) Dissolution kinetics of sulfate from schwertmannite under variable pH conditions. Mine Water Environ 29:263–269CrossRefGoogle Scholar
  28. Ponthieu M, Juillot F, Hiemstra T, Riemsdijk WH, Benedetti MF (2006) Metal ion binding to iron oxides. Geochim Cosmochim Acta 70:2679–2698CrossRefGoogle Scholar
  29. Regenspurg S, Peiffer S (2005) Arsenate and chromate incorporation in schwertmannite. Appl Geochem 20:1226–1239CrossRefGoogle Scholar
  30. Regenspurg S, Brand A, Peiffer S (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochim Cosmochim Acta 68:1185–1197CrossRefGoogle Scholar
  31. Rodda DP, Wells JD, Johnson BB (1996) Anomalous adsorption of copper (II) on goethite. J Colloid Interface Sci 184:564–569CrossRefGoogle Scholar
  32. Saglam ES, Akçay M, Çolak DN, Bektas KI, Beldüz AO (2016) Generation of acid mine drainage around the Karaerik copper mine (Espiye, Giresun, NE Turkey): implications from the bacterial population in the Acısu effluent. Extremophiles 20:673–685CrossRefGoogle Scholar
  33. Schroth AW, Parnell RA (2005) Trace metal retention through the schwertmannite to goethite transformation as observed in a field setting, Alta mine, MT. Appl Geochem 20:907–917CrossRefGoogle Scholar
  34. Swedlund PJ, Webster JG (2001) Cu and Zn ternary surface complex formation with SO4 on ferrihydrite and schwertmannite. Appl Geochem 16:503–511CrossRefGoogle Scholar
  35. Waychunas GA, Xu N, Fuller CC, Davis JA, Bigham JM (1995) XAS study of AsO4 3− and SeO4 2− substituted schwertmannites. Physica B 208&209: 481–483, 208-209Google Scholar
  36. Webster JG, Swedlund PJ, Webster KS (1998) Trace metal adsorption onto an acid mine drainage iron oxy hydroxyl sulfate. Environ Sci Technol 32:1361–1368CrossRefGoogle Scholar
  37. Xie YY, Lu GN, Ye H, Yang CF, Yi XY, Dang Z (2017) Role of dissolved organic matter in the release of chromium from schwertmannite: kinetics, repartition, and mechanisms. J Environ Qual 46:1088–1097CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Environment and EnergySouth China University of TechnologyGuangzhouChina
  2. 2.The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of EducationSouth China University of TechnologyGuangzhouChina
  3. 3.Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency DisposalSouth China University of TechnologyGuangzhouChina
  4. 4.School of Environmental and Biological Sciences, RutgersThe State University of New JerseyNew BrunswickUSA

Personalised recommendations