Skip to main content
Log in

Comparative study of remediation of Cr(VI)-contaminated soil using electrokinetics combined with bioremediation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The purpose of this research is to design a new bioremediation-electrokinetic (Bio-EK) remediation process to increase treatment efficiency of chromium contamination in soil. Upon residual chromium analysis, it is shown that traditional electrokinetic-PRB system (control) does not have high efficiency (80.26%) to remove Cr(VI). Bio-electrokinetics of exogenous add with reduction bacteria Microbacterium sp. Y2 and electrokinetics can enhance treatment efficiency Cr(VI) to 90.67% after 8 days’ remediation. To optimize the overall performance, integrated bio-electrokinetics were designed by synergy with 200 g humic substances (HS) into the systems. According to our results, Cr(VI) (98.33%) was effectively removed via electrokinetics. Moreover, bacteria and humic substances are natural, sustainable, and economical enhancement agents. The research results indicated that the use of integrated bio-electrokinetics is an effective method to remediate chromium-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Álvarez-Ayuso E, García-Sánchez A (2003) Palygorskite as a feasible amendment to stabilize heavy metal polluted soils. Environ Pollut 125(3):337–344

    Article  Google Scholar 

  • Aparicio JD, Benimeli CS, Almeida CA, Polti MA, Colin VL (2017) Integral use of sugarcane vinasse for biomass production of actinobacteria: potential application in soil remediation. Chemosphere 181:478–484

    Article  CAS  Google Scholar 

  • Dong D, Zhao X, Hua X, Liu J, Gao M (2009) Investigation of the potential mobility of Pb, Cd and Cr(VI) from moderately contaminated farmland soil to groundwater in Northeast, China. J Hazard Mater 162(2–3):1261–1268

    Article  CAS  Google Scholar 

  • Fu R, Wen D, Xia X, Zhang W, Gu Y (2017) Electrokinetic remediation of chromium (Cr)-contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes. Chem Eng J 316:601–608

    Article  CAS  Google Scholar 

  • Galan E (1996) Properties and applications of palygorskite–sepiolite clays. Clay Miner 31:443–453

    Article  CAS  Google Scholar 

  • Gupta VK, Mohan D, Sharma S, Park KT (1999) Removal of chromium (VI) from electroplating industry wastewater using bagasse fly ash—a sugar industry waste material. Environmentalist 19:129–136

    Article  Google Scholar 

  • Han XF, Su Y, Sridhar BBM, Monts DL (2004) Distribution, transformation and bioavailability of trivalent and hexavalent chromium in contaminated soil. Plant Soil 265:243–252

    Article  CAS  Google Scholar 

  • Hanay O, Hasar H, Kocer NN (2009) Effect of EDTA as washing solution on removing of heavy metals from sewage sludge by electrokinetic. J Hazard Mater 169:703–710

    Article  CAS  Google Scholar 

  • Hong YP, Wu W, Li J, Gu, Duan S (2012) Humic analog AQDS and AQS as an electron mediator can enhance chromate reduction by Bacillus sp. strain 3C(3). Appl Microbiol Biotechnol 93:2661–2668

    Article  CAS  Google Scholar 

  • Hu H, Jin Q, Kavan P (2014) A study of heavy metal pollution in China: current status, pollution-control policies and countermeasures. Sustainability 6(9):5820–5838

    Article  CAS  Google Scholar 

  • Huang Q, Yu Z, Pang Y, Wang Y, Cai Z (2015) Coupling bioleaching and electrokinetics to remediate heavy metal contaminated soils. Bull Environ Contam Toxicol 94:519–524

    Article  CAS  Google Scholar 

  • Kappler A, Benz M, Schink B, Brune A (2004) Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiol Ecol 47(1):85–92

    Article  CAS  Google Scholar 

  • Meng F, Xue H, Wang Y, Zheng B, Wang J (2017) Citric-acid preacidification enhanced electrokinetic remediation for removal of chromium from chromium-residue-contaminated soil. Environ Technol: 1–7

  • Murray HH (1995) Clays in industry and the environment. Proc. 10th International Clay Conference Adelaide Australia (Australia): 49–55

  • Murray HH (2000) Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci 17:207–221

    Article  CAS  Google Scholar 

  • Nevin KP, Lovley DR (2000) Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments. Environ Sci Technol 34:2472–2478

    Article  CAS  Google Scholar 

  • Nörtemann B (1999) Biodegradation of EDTA. Appl Microbiol Biotechnol 51:751–759

    Article  Google Scholar 

  • Qian J, Zhou J, Wang L, Wei L, Li Q, Wang D, Wang Q (2017) Direct Cr (VI) bio-reduction with organics as electron donor by anaerobic sludge. Chem Eng J 309:330–338

    Article  CAS  Google Scholar 

  • Rakshit S, Uchimiya M, Sposito G (2009) Iron (III) bioreduction in soil in the presence of added humic substances. Soil Sci Soc Am J 73(1):65

    Article  CAS  Google Scholar 

  • Rtidel H, Terytze K (1999) Determination of extractable chromium (VI) in soils using a photometeric method. Chemosphere 39(4):697–708

    Article  Google Scholar 

  • Seo H, Sun E, Roh Y (2013) Remediation of chromium-contaminated water using biogenic nano-sized materials and metal-reducing bacteria. J Nanosci Nanotechnol 13(6):4405–4408

    Article  CAS  Google Scholar 

  • Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851

    Article  CAS  Google Scholar 

  • Wang L, Wang Y, Zhang W, Xu C, An Z (2014) Multivariate statistical techniques for evaluating and identifying the environmental significance of heavy metal contamination in sediments of the Yangtze River, China. Environmental earth sciences 71(3):1183–1193

    Article  CAS  Google Scholar 

  • Wang J, Han X, Ji Y, Ma H (2015) Adsorption of Cr(VI) from aqueous solution onto short-chain polyaniline/palygorskite composites. Desalin Water Treat 56(2):356–365

    Article  CAS  Google Scholar 

  • Wang Q, Liu XY, Zhang XY, Hou YY, Hu XX, Liang X, Chen X (2016) Influence of tea saponin on enhancing accessibility of pyrene and cadmium phytoremediated with Lolium multiflorum in co-contaminated soils. Environ Sci Pollut Res Int 23(6):5705–5711

    Article  CAS  Google Scholar 

  • Wang Y, Zhang B, Deng T and Li F (2017) Reclamation of EDTA by sodium tetraethylenepentamine-multi dithiocarbamate after soil washing process with EDTA. Environ Earth Sci 76(8)

  • Wu ZN, Haiyan M, Ji XH, Xin XL (2004) Heavy metal concentrations in vegetable garden soil from the suburb of Hangzhou, People’s Republic of China. Environ Contam Toxicol 72:165–169

    Article  Google Scholar 

  • Xie A, Ji L, Luo S, Wang Z, Xu Y, Kong Y (2014) Synthesis, characterization of poly(m-phenylenediamine)/palygorskite and its unusual and reactive adsorbability to chromium(vi). New J Chem 38(2):777

    Article  CAS  Google Scholar 

  • Xu Y, Xu X, Hou H, Zhang J, Zhang D, Qian G (2016) Moisture content-affected electrokinetic remediation of Cr(VI)-contaminated clay by a hydrocalumite barrier. Environ Sci Pollut Res Int 23(7):6517–6523

    Article  CAS  Google Scholar 

  • Yuan C, Chiang TS (2007) The mechanisms of arsenic removal from soil by electrokinetic process coupled with iron permeable reaction barrier. Chemosphere 67(8):1533–1542

    Article  CAS  Google Scholar 

  • Zhang S, Zhang J, Cheng X, Mei Y, Hu C, Wang M, Li J (2015) Electrokinetic remediation of soil containing Cr(VI) by photovoltaic solar panels and a DC-DC converter. J Chem Technol Biotechnol 90(4):693–700

    Article  CAS  Google Scholar 

  • Zheng JD, Chen CB, Tao T, Yin J (2010) Study on the high temperature modification of attapulgite. Appl Chem Ind 39(12):1835–1837

    CAS  Google Scholar 

  • Zhi L, Schmitt K, Perminova IV (2004) Reduction of Cr(VI) by peat and coal humic substances. Environ Chem Lett 2(3):141–145

    Article  Google Scholar 

  • Zhou S, Xue A, Zhao Y, Wang Q, Chen Y, Li M, Xing W (2011) Competitive adsorption of Hg2+, Pb2+ and Co2+ ions on polyacrylamide/attapulgite. Desalination 270(1–3):269–274

    Article  CAS  Google Scholar 

Download references

Funding

This project is financially supported by the National key R&D Program of China (2016YFA06010000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiquan He.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., He, C., Chen, X. et al. Comparative study of remediation of Cr(VI)-contaminated soil using electrokinetics combined with bioremediation. Environ Sci Pollut Res 25, 17682–17689 (2018). https://doi.org/10.1007/s11356-018-1741-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1741-8

Keywords

Navigation