Skip to main content

Advertisement

Log in

Acute ecotoxicological effects of salicylic acid on the Polychaeta species Hediste diversicolor: evidences of low to moderate pro-oxidative effects

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Contamination of the aquatic environment by pharmaceutical drugs is an emerging issue in ecotoxicology. Aquatic organisms, in the presence of xenobiotics, tend to activate defensive mechanisms against toxic effects in order to mitigate and/or compensate for the toxic damages that frequently result from these interactions. Salicylic acid (SA) is a common drug, widely used in human medicine due to its analgesic, anti-inflammatory, and antipyretic properties, as well as its activity in terms of preventing platelet aggregation, among other clinical and cosmetic uses. It is commonly found in levels of the nanograms per liter to the micrograms per liter range in receiving waters, and its presence has been related to toxic effects in aquatic organisms, including oxidative stress. However, the number of studies that characterize the ecotoxicological profile of salicylates is still scarce and no studies have been published about the putative toxic effects of SA, especially in marine polychaetes. In order to determine the potential ecotoxicological effects caused by SA, individuals of the marine Polychaeta species Hediste diversicolor were exposed for 96 h to ecologically relevant concentrations of this compound, and several biochemical endpoints were evaluated, namely the activity of the antioxidant enzymes glutathione peroxidase (GPx) and catalase (CAT), the phase II biotransformation isoenzymes glutathione S-transferases (GSTs), the cholinergic enzyme acetylcholinesterase (AChE), and the determination of lipoperoxidative damage (thiobarbituric acid-reactive substances (TBARS) assay). The obtained results demonstrated that despite the pro-oxidative effects elicited by SA, exposure to realistic levels of this compound was not able to generate a state of oxidative stress, and the adaptive protective responses elicited by exposed individuals were effective enough to minimize and/or inhibit the damage potentially caused by overproduced reactive oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Anderson MD, Chen Z, Klessig DF (1998) Possible involvement of lipid peroxidation in salicylic acid-mediated induction of PR-1 gene expression. Phytochemistry 47(4):555–566

    Article  CAS  Google Scholar 

  • Antunes SC, Marques SM, Pereira R, Gonçalves F, Nunes B (2010) Testing procedures for the determination of several biomarkers in different species, for environmental assessment of pollution. J Environ Monit 12(8):1625–1630

    Article  CAS  Google Scholar 

  • Arthur JR (2000) The glutathione peroxidases. Cell Mol Life Sci 57(13–14):1825–1835

    CAS  Google Scholar 

  • Battaglia V, Salvi M, Toninello A (2005) Oxidative stress is responsible for mitochondrial permeability transition induction by salicylate in liver mitochondria. J Biol Chem 280:33864–33872. https://doi.org/10.1074/jbc.M502391200

    Article  CAS  Google Scholar 

  • Besse JP, Garric J (2008) Human pharmaceuticals in surface waters. Implementation of a prioritization methodology and application to the French situation. Toxicol Lett 176(2):104–123

    Article  CAS  Google Scholar 

  • Blaise C, Gagnê F, Gillis PL, Eullafroy P (2013) Polychaetes as bioindicators of water quality in the Saguenay Fjord (Quebec, Canada): a preliminary investigation. J Xenobiot 3:1–2

    Article  CAS  Google Scholar 

  • Boreham DR, Martin BK (1969) The kinetics of elimination of salicylic acid and the formation of gentisic acid. Br J Pharmacol 37:294–300

    Article  CAS  Google Scholar 

  • Boxall ABA (2004) The environmental side effects of medication. EMBO Rep 5(12):1110–1116. https://doi.org/10.1038/sj.embor.7400307

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  Google Scholar 

  • Carballa M, Omil F, Lema JM, Llompart M, Garcı́a-Jares C, Rodrı́guez I, Gómez M, Ternes T (2004) Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res 38(12):2918–2926

    Article  CAS  Google Scholar 

  • Carrara C, Ptacek CJ, Robertson WD, Blowes DW, Moncur MC, Sverko E, Backus S (2008) Fate of pharmaceutical and trace organic compounds in three septic system plumes, Ontario, Canada. Environ Sci Technol 42:2805–2811

    Article  CAS  Google Scholar 

  • Christen V, Hickmann S, Rechenberg B, Fent K (2010) Highly active human pharmaceuticals in aquatic systems: a concept for their identification based on their mode of action. Aquat Toxicol 96(3):167–181

    Article  CAS  Google Scholar 

  • Comeau F, Surette C, Brun GL, Losier R (2008) The occurrence of acidic drugs and caffeine in sewage effluents and receiving waters from three coastal watersheds in Atlantic Canada. Sci Total Environ 396(2):132–146

    Article  CAS  Google Scholar 

  • Conaghan PG (2012) A turbulent decade for NSAIDs: update on current concepts of classification, epidemiology, comparative efficacy, and toxicity. Rheumatol Int 32(6):1491–1502

    Article  CAS  Google Scholar 

  • Correia B, Freitas R, Figueira E, Soares AMVM, Nunes B (2016) Oxidative effects of the pharmaceutical drug paracetamol on the edible clam Ruditapes philippinarum under different salinities. Comp Biochem Physiol Part-C: Toxicol Pharmacol 179:116–124. https://doi.org/10.1016/j.cbpc.2015.09.006

    Article  CAS  Google Scholar 

  • Costa PF, Oliveira RF, Fonseca LC (2006) Feeding ecology of Hediste Diversicolor (OF Müller) (Annelida, Polychaeta) on estuarine and lagoon environments in the southwest coast of Portugal. Pan-Am J Aquat Sci 1:114–125

    Google Scholar 

  • Coudray C, Favier A (2000) Determination of salicylate hydroxylation products as an in vivo oxidative stress marker. Free Radic Biol Med 29:1064–1070. https://doi.org/10.1016/S0891-5849(00)00403-2

    Article  CAS  Google Scholar 

  • Davison C (1971) Salicylate metabolism in man. Ann N Y Acad Sci 179:249–68

  • Delwing-de Lima D, Wollinger LF, Casagrande ACM, Delwing F, da Cruz JGP, Wyse ATS, Magro DD–D (2010) Guanidino compounds inhibit acetylcholinesterase and butyrylcholinesterase activities: effect neuroprotector of vitamins E plus C. Int J Dev Neurosci 28(6):465–473. https://doi.org/10.1016/j.ijdevneu.2010.06.008

    Article  CAS  Google Scholar 

  • Doi H, Horie T (2010) Salicylic acid-induced hepatotoxicity triggered by oxidative stress. Chem Biol Interact 183(3):363–368

    Article  CAS  Google Scholar 

  • Doi H, Masubuchi Y, Narimatsu S, Nishigaki R, Horie T (1998) Salicylic acid-induced lipid peroxidation in rat liver microsomes. Res Commun Mol Pathol Pharmacol 100(3):265–271

    CAS  Google Scholar 

  • Doi H, Iwasaki H, Masubuchi Y, Nishigaki R, Horie T (2002) Chemiluminescence associated with the oxidative metabolism of salicylic acid in rat liver microsomes. Chem Biol Interact 140:109–119

    Article  CAS  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) New and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7(2):88–95

    Article  CAS  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76(2):122–159

    Article  CAS  Google Scholar 

  • Flohe L, Günzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–120

    Article  CAS  Google Scholar 

  • Gambi MC, Castelli A, Giangrande A, Lanera P, Prevedelli D, Zunarelli Vandini R (1994) Polychaetes of commercial and applied interest in Italy: an overview. Mém Mus Natn Hist Nat 162:593–603

    Google Scholar 

  • García-Arberas L, Rallo A (2002) Life cycle, demography and secondary production of the Polychaete Hediste diversicolor in a non-polluted estuary in the Bay of Biscay. Mar Ecol 23(3):237–251

    Article  Google Scholar 

  • Gomes T, Gonzalez-Rey M, Romero AR, Trombini C, Riba I, Blasco J, Bebianno MJ (2013) Biomarkers in Hediste Diversicolor (Polychaeta: Nereididae) as management tools for environmental assessment on the southwest Iberian coast. Sci Mar 77(S1):69–78

    Article  CAS  Google Scholar 

  • Gómez-Oliván LM, Galar-Martínez M, Islas-Flores H, García-Medina S, Sanjuan-Reyes N (2014) DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna. Comp Biochem Physiol Part - C: Toxicol Pharmacol 164:21–26. https://doi.org/10.1016/j.cbpc.2014.04.004

    Article  CAS  Google Scholar 

  • Grassi M, Kaykioglu G, Belgiorno V, Lofrano G (2012) Removal of emerging contaminants from water and wastewater by adsorption process. In: Emerging compounds removal from wastewater. Springer, Dordrecht, p 15–37

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases the first enzymatic step in mercapturic acid formation. J Biol Chem 249(22):7130–7139

    CAS  Google Scholar 

  • Halling-Sørensen B, Nors Nielsen S, Lanzky PF, Ingerslev F, Holten Lützhøft HC, Jørgensen SE (1998) Occurence, fate and effects of pharmaceuticals substance in the environment—a review. Chemosphere 36(2):357–393

    Article  Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322. https://doi.org/10.1104/pp.106.077073

    Article  CAS  Google Scholar 

  • Heberer T, Reddersen K, Mechlinski A. (2002) From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas. Water Sci Technol 46(3):81–88

  • Hignite C, Azarnoff DL (1977) Drugs and drug metabolites as environmental contaminants: chlorophenoxyisobutyrate and salicylic acid in sewage water effluent. Life Sci 20(2):337–341

    Article  CAS  Google Scholar 

  • Huschek G, Hansen PD, Maurer HH, Krengel D, Kayser A (2004) Environmental risk assessment of medicinal products for human use according to European Commission recommendations. Environ Toxicol 19(3):226–240

  • Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9(6):515–540

    Article  CAS  Google Scholar 

  • Ji B, Masubuchi Y, Horie T (2001) A possible mechanism of naproxen-induced lipid peroxidation in rat liver microsomes. Pharmacol Toxicol 89(1):43–48. https://doi.org/10.1111/j.1600-0773.2001.890107.x

    Article  CAS  Google Scholar 

  • Kaleniecka A, Zarzycki PK (2015) Pharmaceuticals in the aquatic environment: sources, effects, treatment methods. Arch Physiother Glob Res 19(3):39–52

    Article  Google Scholar 

  • Kay P, Blackwell PA, Boxall AB (2005) Transport of veterinary antibiotics in overland flow following the application of slurry to arable land. Chemosphere 59(7):951–959

  • Khan SJ, Ongerth J (2005) Occurrence and removal of pharmaceuticals at an Australian sewage treatment plant. Water 32(4):80–85

  • Kim Y, Choi K, Jung J, Park S, Kim PG, Park J (2007) Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ Int 33(3):370–375

    Article  CAS  Google Scholar 

  • López-Serna R, Petrović M, Barceló D (2012) Occurrence and distribution of multi-class pharmaceuticals and their active metabolites and transformation products in the Ebro River basin (NE Spain). Sci Total Environ 440:280–289

    Article  Google Scholar 

  • Maranho LA, Baena-Nogueras RM, Lara-Martín PA, DelValls TA, Martín-Díaz ML (2014) Bioavailability, oxidative stress, neurotoxicity and genotoxicity of pharmaceuticals bound to marine sediments. The use of the polychaete Hediste diversicolor as bioindicator species. Environ Res 134:353–365

  • Marques CR, Abrantes N, Gonçalves F (2004) Life-history traits of standard and autochthonous cladocerans: I. acute and chronic effects of acetylsalicylic acid. Environ Toxicol 19(5):518–526. https://doi.org/10.1002/tox.20059

    Article  CAS  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158

    Article  CAS  Google Scholar 

  • Moraes TB, Ferreira JL, da Rosa CE, Sandrini JZ, Votto AP, Trindade GS, Geracitano LA, Abreu PC, Monserrat JM (2006) Antioxidant properties of the mucus secreted by Laeonereis acuta (Polychaeta, Nereididae): a defense against environmental pro-oxidants? Comp Biochem Physiol - C Toxicol Pharmacol 142(3–4 SPEC. ISS):293–300

    Article  Google Scholar 

  • Moreira SM, Lima I, Ribeiro R, Guilhermino L (2006) Effects of estuarine sediment contamination on feeding and on key physiological functions of Polychaete Hediste Diversicolor: laboratory and situ assays. Aquat Toxicol 78(2):186–201

    Article  CAS  Google Scholar 

  • Nunes B, Carvalho F, Guilhermino L (2006) Effects of widely used pharmaceuticals and a detergent on oxidative stress biomarkers of the crustacean Artemia parthenogenetica. Chemosphere 62:581–594. https://doi.org/10.1016/j.chemosphere.2005.06.013

    Article  CAS  Google Scholar 

  • Nunes B, Pinto G, Martins L, Gonçalves F, Antunes SC (2014) Biochemical and standard toxic effects of acetaminophen on the macrophyte species Lemna minor and Lemna gibba. Environ Sci Pollut Res 21:10815–10822. https://doi.org/10.1007/s11356-014-3059-5

    Article  CAS  Google Scholar 

  • Nunes B, Campos JC, Gomes R, Braga MR, Ramos AS, Antunes SC, Correia AT (2015a) Ecotoxicological effects of salicylic acid in the freshwater fish Salmo trutta fario: antioxidant mechanisms and histological alterations. Environ Sci Pollut Res Int 22(1):667–678. https://doi.org/10.1007/s11356-014-3337-2.

    Article  CAS  Google Scholar 

  • Nunes B, Verde MF, Soares AMVM (2015b) Biochemical effects of the pharmaceutical drug paracetamol on Anguilla anguilla. Environ Sci Pollut Res 22(15):11574–11584. https://doi.org/10.1007/s11356-015-4329

    Article  CAS  Google Scholar 

  • Oliveira LLD, Antunes SC, Gonçalvez S, Rocha O, Nunes B (2015) Evaluation of ecotoxicological effects of drugs on Daphnia magna using different enzymatic biomarkers. Ecotoxicol Environ Saf 119:123–131. https://doi.org/10.1016/j.ecoenv.2015.04.028

    Article  CAS  Google Scholar 

  • Orsolic N, Balta V, Odeh D, Mataković M, Skurić J (2017) Oxidative stress and inflammation caused by n-hexyl salicylate in mouse skin: the effectiveness of flavonoids. Int J Phytomed 9(2). https://doi.org/10.5138/09750185.2064

  • Paíga P, Santos LHMLML, Ramos S, Jorge S, Silva JG, Delerue-Matos C (2016) Presence of pharmaceuticals in the Lis river (Portugal): sources, fate and seasonal variation. Sci Total Environ 573:164–177

    Article  Google Scholar 

  • Pôrto WG (2001) Free radicals and neurodegeneration. Physiological understanding: basis for new therapy? Rev. Neurosci 9(2):70–76

    Google Scholar 

  • Radu M, Munteanu MC, Petrache S, Serban AI, Dinu D, Hermenean A, Sima C, Dinischiotu A (2010) Depletion of intracellular glutathione and increased lipid peroxidation mediate cytotoxicity of hematite nanoparticles in MRC-5 cells*. Acta Biochim Pol 57(3):355–360

    Article  CAS  Google Scholar 

  • Regoli F, Giuliani ME (2014) Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. Mar Environ Res 93:106–117. https://doi.org/10.1016/j.marenvres.2013.07.006

    Article  CAS  Google Scholar 

  • da Rosa CE, Iurman MG, Abreu PC, Geracitano LA, Monserrat JM (2005) Antioxidant mechanisms of the Nereidid Laeonereis acuta (Anelida: Polychaeta) to cope with environmental hydrogen peroxide. Physiol Biochem Zool: PBZ 78(4):641–649

    Article  Google Scholar 

  • Scaps P (2002) A review of the biology, ecology and potential use of the common Ragworm Hediste diversicolor (O. F. Müller) (Annelida: Polychaeta). Hydrobiology 470(1):203–218

    Article  Google Scholar 

  • Scaps P, Demuynck S, Descamps M, Dhainaut A (1996) Biochemical and enzymatic characterization of an acetylcholinesterase from Hediste Diversicolor (Annelida, Polychaeta): comparison with the Cholinesterases of Eisenia Fetida (Annelida, Oligochaeta). Biol Bull 190(3):396–402

    Article  CAS  Google Scholar 

  • Solé M, Shaw JP, Frickers PE, Readman JW, Hutchinson TH (2010) Effects on feeding rate and biomarker responses of marine mussels experimentally exposed to propranolol and acetaminophen. Anal Bioanal Chem 396:649–656. https://doi.org/10.1007/s00216-009-3182-1

    Article  CAS  Google Scholar 

  • Stamatis NK, Konstantinou IK (2013) Occurrence and removal of emerging pharmaceutical, personal care compounds and caffeine tracer in municipal sewage treatment plant in Western Greece. J Environ Sci Health B 48:800–813

    Article  CAS  Google Scholar 

  • Szwajgier D (2013) Anticholinesterase activity of phenolic acids and their derivatives. Z Naturforsch C 68(3–4):125–132

    Article  CAS  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260

  • Thompson HM (1999) Esterases markers of exposure to organophosphates and carbamates. Ecotoxicology 8(5):369–384. https://doi.org/10.1023/A:1008934505370

    Article  CAS  Google Scholar 

  • Ugurlucan M, Caglar IM, Caglar FN, Ziyade S, Karatepe O, Yildiz Y, Zencirci E, Ugurlucan FG, Arslan AH, Korkmaz S, Filizcan U, Cicek S (2012) Aspirin: from a historical perspective. Recent Pat Cardiovasc Drug Discov 7(1):71–76

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf 64(2):178–189. https://doi.org/10.1016/j.ecoenv.2005.03.013

    Article  CAS  Google Scholar 

  • Vane JR (2000) The fight against rheumatism: from willow bark to COX-1 sparing drugs. J Physiol Pharmacol 51:573–586

    CAS  Google Scholar 

  • Virgilio M, Abbiati M (2004) Habitat discontinuity and genetic structure in populations of the estuarine species Hediste Diversicolor (Polychaeta: Nereididae). Estuar Coast Shelf Sci 61(2):361–367

    Article  Google Scholar 

  • Virgilio M, Baroncini N, Trombini C, Abbiati M (2003) Relationships between sediments and tissue contamination and allozymic patterns in Hediste diversicolor (Polychaeta Nereididae) in the Pialassa lagoons (north Adriatic Sea). Oceanologica Acta 26(1):85–92

  • Warner TD, Mitchell JA (2002) Cyclooxygenase-3 (COX-3): filling in the gaps toward COX continuum? Proc Natl Acad Sci U S A 99(21):13371–13373

    Article  CAS  Google Scholar 

  • Winston GW, Di Giulio RT (1991) Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19(2):137–161

    Article  CAS  Google Scholar 

  • Younsi M, Daas T, Daas O, Scaps P (2010) Polychaetes of commercial interest from the Mediterranean East Coast of Algeria. Mediterr Mar Sci 11(1):185–187

    Article  Google Scholar 

  • Zivna D, Plhalova L, Praskova E, Stepanova S, Siroka Z, Sevcikova M, Blahova J, Bartoskova M, Marsalek P, Skoric M, Svobodova Z (2013) Oxidative stress parameters in fish after subchronic exposure to acetylsalicylic acid. Neuro Endocrinol Lett 34(Suppl 2):116–122

    CAS  Google Scholar 

  • Zou J, Neumann NF, Holland JW, Belosevic M, Cunningham C, Secombes CJ, Rowley AF (1999) Fish macrophages express a cyclo-oxigenase-2 homologue after activation. Biochem J 340:153–159

    Article  CAS  Google Scholar 

  • Zuccato E, Calamari D, Natangelo M, Fanelli R (2000) Presence of therapeutic drugs in the environment. Lancet 355(9217):1789–1790. https://doi.org/10.1016/S0140-6736(00)02270-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to Dr. Andreia Rocha for her technical assistance during the performance of the laboratory procedures.

Funding

Bruno Nunes was hired under the program Investigador FCT, co-funded by the Human Potential Operational Program (National Strategic Reference Framework 2007–2013) and European Social Fund (EU). This work was also supported by European Funds through COMPETE and by National Funds through the Portuguese Science Foundation (FCT) within projects PEst-C/MAR/LA0017/2013 and PEst-C/MAR/LA0015/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Nunes.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, B. Acute ecotoxicological effects of salicylic acid on the Polychaeta species Hediste diversicolor: evidences of low to moderate pro-oxidative effects. Environ Sci Pollut Res 26, 7873–7882 (2019). https://doi.org/10.1007/s11356-018-04085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-04085-y

Keywords

Navigation