Skip to main content
Log in

Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Biochar was carbon-rich and generated by high-temperature pyrolysis of biomass under oxygen-limited conditions. Due to the limitations of surface functional groups and the weakness of surface activity in the field of environmental remediation, the raw biochar frequently was chemically modified to improve its properties with a new performance. In this study, a kind of high-efficiency and low-cost amino biochar modified by nano zero-valent iron (ABC/NZVI) was synthesized and applied to paddy soil contaminated with arsenic (As). Dynamic changes of soil properties, arsenic speciations and rhizosphere microbial communities have been investigated over the whole growth period of rice plants. Pot experiments revealed that the ABC/NZVI could decrease the arsenic concentration in rice straw by 47.9% and increase the content of nitrogen in rice straw by 47.2%. Proportion of Geobacter in soil with ABC/NZVI treatment increased by 175% in tillering period; while Nitrososphaera decreased by 61 and 20% in tillering and maturity, respectively, compared to that of control. ABC/NZVI promotes arsenic immobilization in rhizosphere soil and precipitation on root surface and reduces arsenic accumulation in rice. At the same time, ABC/NZVI would inhibit Nitrososphaera which is related to ammonia oxidation process, and it would have a promising potential as soil amendment to reduce nitrogen loss probably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18

    Article  CAS  Google Scholar 

  • Bian R, Chen D, Liu X, Cui L, Li L, Pan G, Xie D, Zheng J, Zhang X, Zheng J, Chang A (2013) Biochar soil amendment as a solution to prevent Cd-tainted rice from China: results from a cross-site field experiment. Ecol Eng 58:378–383

    Article  Google Scholar 

  • Bian R, Joseph S, Cui L, Pan G, Li L, Liu X, Zhang A, Rutlidge H, Wong S, Chia C, Marjo C, Gong B, Munroe P, Donne S (2014) A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. J Hazard Mater 272:121–128

    Article  CAS  Google Scholar 

  • Bostick BC, Chen C, Fendorf S (2004) Arsenite retention mechanisms within estuarine sediments of Pescadero, CA. Environ Sci Technol 38:3299–3304

    Article  CAS  Google Scholar 

  • Bostick BC, Fendorf S (2003) Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochim Cosmochim Acta 67:909–921

    Article  CAS  Google Scholar 

  • Buttry DA, Peng JCM, Donnet J-B, Rebouillat S (1999) Immobilization of amines at carbon fiber surfaces. Carbon 37:1929–1940

    Article  CAS  Google Scholar 

  • Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45:629–634

    Article  CAS  Google Scholar 

  • Childers SE, Ciufo S, Lovley DR (2002) Geobacter metallireducens accesses insoluble Fe(III) oxide by chemotaxis. Nature 416:767–769

    Article  CAS  Google Scholar 

  • China, N. S. (1995) Environmental quality standard for soils. GB 15618-1995. National Environmental Protection Agency of China

  • Driehaus W, Jekel M, Hildebrandt U (1998) Granular ferric hydroxide—a new adsorbent for the removal of arsenic from natural water. J Water Supply Res Technol AQUA 47:30–35

    CAS  Google Scholar 

  • Environment Agency (2004) https://www.gov.uk/government/organisations/environment-agency

  • Fellet G, Marchiol L, Delle Vedove G, Peressotti A (2011) Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere 83:1262–1267

    Article  CAS  Google Scholar 

  • Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in south and southeast Asia. Science 328:1123–1127

    Article  CAS  Google Scholar 

  • Gao Y, Mucci A (2003) Individual and competitive adsorption of phosphate and arsenate on goethite in artificial seawater. Chem Geol 199:91–109

    Article  CAS  Google Scholar 

  • Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The ‘Terra Preta’ phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41

    Article  CAS  Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230

    Article  CAS  Google Scholar 

  • Guan X-H, Wang J, Chusuei CC (2008) Removal of arsenic from water using granular ferric hydroxide: macroscopic and microscopic studies. J Hazard Mater 156:178–185

    Article  CAS  Google Scholar 

  • Guo X, Chen F (2005) Removal of arsenic by bead cellulose loaded with iron oxyhydroxide from groundwater. Environ Sci Technol 39:6808–6818

    Article  CAS  Google Scholar 

  • Handler RM, Frierdich AJ, Johnson CM, Rosso KM, Beard BL, Wang C, Latta DE, Neumann A, Pasakarnis T, Premaratne WAPJ, Scherer MM (2014) Fe(II)-catalyzed recrystallization of goethite revisited. Environ Sci Technol 48:11302–11311

    Article  CAS  Google Scholar 

  • Hansel CM, Benner SG, Fendorf S (2005) Competing Fe(II)-induced mineralization pathways of ferrihydrite. Environ Sci Technol 39:7147–7153

    Article  CAS  Google Scholar 

  • Hossain MK, Strezov V, Yin Chan K, Nelson PF (2010) Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 78:1167–1171

    Article  CAS  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.) Biomass Bioenergy 57:196–204

    Article  CAS  Google Scholar 

  • Jeon B-H, Dempsey BA, Burgos WD (2003) Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides. Environ Sci Technol 37:3309–3315

    Article  CAS  Google Scholar 

  • Khan S, Chao C, Waqas M, Arp HPH, Zhu Y-G (2013) Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ Sci Technol 47:8624–8632

    Article  CAS  Google Scholar 

  • Latta DE, Gorski CA, Scherer MM (2012) Influence of Fe2+-catalysed iron oxide recrystallization on metal cycling. Biochem Soc Trans 40:1191–1197

    Article  CAS  Google Scholar 

  • Lehmann J (2007) A handful of carbon. Nature 447:143–144

    Article  CAS  Google Scholar 

  • Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems—a review. Mitig Adapt Strateg Glob Chang 11:395–419

    Article  Google Scholar 

  • Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806–809

    Article  CAS  Google Scholar 

  • Liu C-P, Luo C-L, Gao Y, Li F-B, Lin L-W, Wu C-A, Li X-D (2010) Arsenic contamination and potential health risk implications at an abandoned tungsten mine, southern China. Environ Pollut 158:820–826

    Article  CAS  Google Scholar 

  • Liu C-P, Luo C-L, Xu X-H, Wu C-A, Li F-B, Zhang G (2012) Effects of calcium peroxide on arsenic uptake by celery (Apium graveolens L.) grown in arsenic contaminated soil. Chemosphere 86:1106–1111

    Article  CAS  Google Scholar 

  • Mann CC (2002) The real dirt on rainforest fertility. Science 297:920–923

    Article  CAS  Google Scholar 

  • Méndez A, Gómez A, Paz-Ferreiro J, Gascó G (2012) Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89:1354–1359

    Article  Google Scholar 

  • O'Dell R, Silk W, Green P, Claassen V (2007) Compost amendment of Cu–Zn minespoil reduces toxic bioavailable heavy metal concentrations and promotes establishment and biomass production of Bromus carinatus (Hook and Arn.) Environ Pollut 148:115–124

    Article  Google Scholar 

  • Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M (2012) amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 14:525–539

    Article  CAS  Google Scholar 

  • Su H, Fang Z, Tsang PE, Zheng L, Cheng W, Fang J, Zhao D (2016) Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles. J Hazard Mater 318:533–540

    Article  CAS  Google Scholar 

  • Su Y-H, McGrath SP, Zhao F-J (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328:27–34

    Article  CAS  Google Scholar 

  • Tosco T, Petrangeli Papini M, Cruz Viggi C, Sethi R (2014) Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod 77:10–21

    Article  CAS  Google Scholar 

  • Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A, Schleper C (2011) Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci U S A 108:8420–8425

    Article  CAS  Google Scholar 

  • Van Herreweghe S, Swennen R, Vandecasteele C, Cappuyns V (2003) Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environ Pollut 122:323–342

    Article  Google Scholar 

  • Vogel, A. I., and J. Mendham (1989) Vogel's textbook of quantitative chemical analysis. Longman Scientific and Technical. John wiley, New York

  • Wang Z-X, Hu X-B, Xu Z-C, Cai L-M, Wang J-N, Zeng D, Hong H-J (2014) Cadmium in agricultural soils, vegetables and rice and potential health risk in vicinity of Dabaoshan Mine in Shaoguan, China. J Cent South Univ 21:2004–2010

    Article  CAS  Google Scholar 

  • Wang N, Xue X-M, Juhasz AL, Chang Z-Z, Li H-B (2017) Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Environmental Pollution 220(Part A):514–522

    Article  CAS  Google Scholar 

  • Waychunas GA, Kim CS, Banfield JF (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7:409–433

    Article  CAS  Google Scholar 

  • Williams PN, Villada A, Deacon C, Raab A, Figuerola J, Green AJ, Feldmann J, Meharg AA (2007) Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley. Environ Sci Technol 41:6854–6859

    Article  CAS  Google Scholar 

  • Wu C, Ye Z, Li H, Wu S, Deng D, Zhu Y, Wong M (2012) Do radial oxygen loss and external aeration affect iron plaque formation and arsenic accumulation and speciation in rice? J Exp Bot 63:2961–2970

    Article  CAS  Google Scholar 

  • Xu P, Wang Z (2014) A comparison study in cadmium tolerance and accumulation in two cool-season turfgrasses and Solanum nigrum L. Water Air Soil Pollut 225:1938

    Article  Google Scholar 

  • Yang G-X, Jiang H (2014) Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res 48:396–405

    Article  CAS  Google Scholar 

  • Yang JE, Kim HJ, Ok Y-S, Lee J-Y, Park J (2007) Treatment of abandoned coal mine discharged waters using lime wastes. Geosci J 11:111–114

    Article  CAS  Google Scholar 

  • Yang, C., T. X. Ma, Z. Zhang, Z. Dang., C. L. Guo, G. N. Lu, and X. Y. Yi (2016) Iron-based amino composite modified charcoal material as well as preparation and application. in S. C. U. o. Technology, editor. State Intellectual Property Office, China

  • Zhu H, Jia Y, Wu X, Wang H (2009) Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J Hazard Mater 172:1591–1596

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National High Technology Research and Development Program of China (2013AA06A209) and the Science and Technology Planning Project of Guangdong Province, China (2016B020242004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Yang.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Lu, Y., Yang, C. et al. Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil. Environ Sci Pollut Res 24, 23815–23824 (2017). https://doi.org/10.1007/s11356-017-9994-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9994-1

Keywords

Navigation