Skip to main content
Log in

Pyrite oxidation under simulated acid rain weathering conditions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We investigated the electrochemical corrosion behavior of pyrite in simulated acid rain with different acidities and at different temperatures. The cyclic voltammetry, polarization curve, and electrochemical impedance spectroscopy results showed that pyrite has the same electrochemical interaction mechanism under different simulated acid rain conditions, regardless of acidity or environmental temperature. Either stronger acid rain acidity or higher environmental temperature can accelerate pyrite corrosion. Compared with acid rain having a pH of 5.6 at 25 °C, the prompt efficiency of pyrite weathering reached 104.29% as the acid rain pH decreased to 3.6, and it reached 125.31% as environmental temperature increased to 45 °C. Increasing acidity dramatically decreases the charge transfer resistance, and increasing temperature dramatically decreases the passivation film resistance, when other conditions are held constant. Acid rain always causes lower acidity mine drainage, and stronger acidity or high environmental temperatures cause serious acid drainage. The natural parameters of latitude, elevation, and season have considerable influence on pyrite weathering, because temperature is an important influencing factor. These experimental results are of direct significance for the assessment and management of sulfide mineral acid drainage in regions receiving acid rain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahlberg E, Broo AE (1997) Electrochemical reaction mechanisms at pyrite in acidic perchlorate solutions. J Electrochem Soc 144:1281–1286

    Article  CAS  Google Scholar 

  • Alloway BJ, Ayres D (1998) Chemical principles of environmental pollution. Water Air Soil Poll 102(1–2):216–218

  • An CH (2015) Acid rain and its control in Dongchuan. Environ Sci Surf 34(1):45–49 (In Chinese with English abstract)

    Google Scholar 

  • Antonijevic MM, Dimitrijevic MD, Serbula SM, Dimitrijevic VLJ, Bogdanovic GD, Milic SM (2005) Influence of inorganic anions on electrochemical behaviour of pyrite. Electrochim Acta 50:4160–4167

    Article  CAS  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd. Wiley and Sons, Hoboken

    Google Scholar 

  • Biegler T, Swift DA (1979) Anodic behaviour of pyrite in acid solutions. Electrochim Acta 24:415–420

    Article  CAS  Google Scholar 

  • Caraballo MA, Macías F, Nieto JM, Ayora C (2016) Long term fluctuations of groundwater mine pollution in a sulfide mining district with dry Mediterranean climate: implications for water resources management and remediation. Sci Total Environ 539:427–435

    Article  CAS  Google Scholar 

  • Davies H, Weber P, Lindsay P, Craw D, Pope J (2011) Characterisation of acid mine drainage in a high rainfall mountain environment, New Zealand. Sci Total Environ 409(15):2971–2980

    Article  CAS  Google Scholar 

  • Donato PD, Mustin C, Benoit R, Erre R (1993) Spatial distribution of iron and sulphur species on the surface of pyrite. Appl Surf Sci 68(1):81–93

    Article  Google Scholar 

  • Droste B, Wisotzky F (2015) Pyrite oxidation processes in cretaceous sedimentary rock. Grundwasser 20(3):197–208

    Article  CAS  Google Scholar 

  • Evans CD, Cullen JM, Alewell C, Kopácek J, Marchetto A, Moldan F, Prechtel A, Rogora M, Veselý J, Wright RF (2001) Recovery from acidification in European surface waters. Hydrol Earth Syst Sci 5:283–297

    Article  Google Scholar 

  • Gerhardsson L, Oskarsson A, Skerfving S (1994) Acid precipitation—effects on trace elements and human health. Sci Total Environ 153(3):237–245

    Article  CAS  Google Scholar 

  • Giannetti BF, Bonilla SH, Zinola CF, Raboczkay T (2001) A study of the main oxidation products of natural pyrite by voltammetric and photoelectrochemical responses. Hydrometallurgy 60:41–53

    Article  CAS  Google Scholar 

  • Heinrich CA (2015) Witwatersrand gold deposits formed by volcanic rain, anoxic rivers and Archaean life. Nat Geosci 8:206–209

    Article  CAS  Google Scholar 

  • Hindshaw RS, Heaton THE, Boyd ES, Lindsay MR, Tipper ET (2016) Influence of glaciation on mechanisms of mineral weathering in two high Arctic catchments. Chem Geol 420:37–50

    Article  CAS  Google Scholar 

  • Ivanova TA, Matveeva TN, Chanturia VA, Ivanova EN (2015) Composition of multicomponent heracleum extracts and its effect on flotation of gold-bearing sulfides. J Min Sci 51(4):819–824

    Article  CAS  Google Scholar 

  • Kucha H, Martens A, Ottenburgs R, Vos WD, Viaene W (1996) Primary minerals of Zn-Pb mining and metallurgical dumps and their environmental behavior at Plombières, Belgium. Environ Geol 27(1):1–15

    Article  CAS  Google Scholar 

  • Lefticariu L, Pratt LM, Ripley EM (2006) Mineralogic and sulfur isotopic effects accompanying oxidation of pyrite in millimolar solutions of hydrogen peroxide at temperatures from 4 to 150°C. Geochim Cosmochim Acta 70(19):4889–4905

    Article  CAS  Google Scholar 

  • Likens GE, Bormann FH, Johnson NM (1972) Acid rain. Environment 14(2):33–40

    CAS  Google Scholar 

  • Liu QY, Zhang YQ, Li HP (2013) Pressure solution of electrically conductive minerals in shallow crust-galvanic processes: a case study from pyrite under differential stress. Appl Geochem 29:144–150

    Article  Google Scholar 

  • McKibben MA, Barnes HL (1986) Oxidation of pyrite in low temperature acidic solutions: rate laws and surface textures. Geochim Cosmochim Acta 50:1509–1520

    Article  CAS  Google Scholar 

  • Meng QP, Zhang W, Zhang J, Zhang ZY, Wu TR (2016) Heavy mineral analysis to identify sediment provenance in the Dan River drainage, China. Geosci J 20(4):449–462

    Article  CAS  Google Scholar 

  • Mihajlović L, Nikolić-Mandić S, Vukanović B, Mihajlović R (2009) Use of the sulfide minerals pyrite and chalcopyrite as electrochemical sensors in non-aqueous solutions. The potentiometric titration of weak acids in alcohols. Open Chem 7(4):900–908

    Google Scholar 

  • Mitsunobu S, Zhu M, Takeichi Y, Ohigashi T, Suga H, Jinno M, Makita H, Sakata M, Ono K, Mase K, Takahashi Y (2016) Direct detection of Fe(II) in extracellular polymeric substances (EPS) at the mineral-microbe interface in bacterial pyrite leaching. Microbes Environ 31(1):63–69

    Article  Google Scholar 

  • Moslemi H, Shamsi P, Habashi F (2011) Pyrite and pyrrhotite open circuit potentials study: effects on flotation. Miner Eng 24:1038–1045

    Article  CAS  Google Scholar 

  • Munoz JA, Gomez C, Ballester A, Blazquez ML, Gonzalez F, Figueroa M (1998) Electrochemical behaviour of chalcopyrite in the presence of silver and Sulfolobus bacteria. J Appl Electrochem 28(1):49–56

    Article  CAS  Google Scholar 

  • Nava JL, Oropeza MT, Gonzalez I (2002) Electrochemical characterisation of sulfur species formed during anodic dissolution of galena concentrate in perchlorate medium at pH 0. Electrochim Acta 47:1513–1525

    Article  CAS  Google Scholar 

  • Nicol MJ (2016) Photocurrents at chalcopyrite and pyrite electrodes under leaching conditions. Hydrometallurgy 163:104–107

    Article  CAS  Google Scholar 

  • Nordstrom DK (2015) Baseline and premining geochemical characterization of mined sites. Appl Geochem 57:17–34

    Article  CAS  Google Scholar 

  • Peters E, Majima H (1968) Electrochemical reactions of pyrite in acid perchlorate solutions. Can Metal Quart 7:111–117

    Article  CAS  Google Scholar 

  • Rabieh A, Albijanic B, Eksteen JJ (2016) A review of the effects of grinding media and chemical conditions on the flotation of pyrite in refractory gold operations. Miner Eng 94:21–28

    Article  CAS  Google Scholar 

  • Reinholz EL, Roberts SA, Apblett CA, Lechman JB, Schunk PR (2016) Composition and manufacturing effects on electrical conductivity of Li/FeS2 thermal battery cathodes. J Electrochem Soc 163(8):A1723–A1729

    Article  CAS  Google Scholar 

  • Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67(5):873–880

    Article  CAS  Google Scholar 

  • Root RA, Hayes SM, Hammond CM, Maier RM, Chorover J (2015) Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate. Appl Geochem 62(SI):131–149

    Article  CAS  Google Scholar 

  • Simic Z, Stanic Z, Milan A (2010) Use of sulphide minerals as electrode sensors for acid-base potentiometric titrations in non-aqueous solvents and their application for the determination of certain biologically active substances. Sens Lett 8(6):784–791

    Article  CAS  Google Scholar 

  • Skjelkvale BL, Mannio J, Wilander A, Andersen T (2001) Recovery from acidification of lakes in Finland, Norway and Sweden 1990-1999. Hydrol Earth Syst Sci 5:327–337

    Article  Google Scholar 

  • Smuda J, Dold B, Friese K, Morgenstern P, Glaesser W (2007) Mineralogical and geochemical study of element mobility at the sulfide-rich Excelsior waste rock dump from the polymetallic Zn-Pb-(Ag-Bi-Cu) deposit, Cerro de Pasco, Peru. J Geochem Explor 92(2–3):97–110

    Article  CAS  Google Scholar 

  • Solmaz R, Kardaş G, Yazıcı B, Erbil M (2008) Adsorption and corrosion inhibitive properties of 2-amino-5-mercapto-1, 3, 4-thiadiazole on mild steel in hydrochloric acid media. Colloid Surf A-Physicochem Eng Asp 312:7–17

    Article  CAS  Google Scholar 

  • Stanić Z, Dimić T (2013) Natural mineral pyrite and analytical application thereof in precipitation titrations in non-aqueous solvents. New J Chem 37:3612–3619

    Article  Google Scholar 

  • Stern M, Geary AL (1957) Electrochemical polarization. 1. A theoretical analysis of the shape of polarization curves. J Electrochem Soc 104:56–63

    Article  CAS  Google Scholar 

  • Tao DP, Richardson PE, Luttrell GH, Yoon RH (2003) Electrochemical studies of pyrite oxidation and reduction using freshly-fractured electrodes and rotating ring-disc electrodes. Electrochim Acta 48:3615–3623

    Article  CAS  Google Scholar 

  • Todd EC, Sherman DM, Purton JA (2003) Surface oxidation of pyrite under ambient atmospheric and aqueous (pH 2 to 10) conditions: electronic structure and mineralogy from X-ray absorption spectroscopy. Geochim Cosmochim Acta 67(5):881–893

    Article  CAS  Google Scholar 

  • Wang X, Yang H, Wang F (2011) An investigation of benzimidazole derivative as corrosion inhibitor for mild steel in different concentration HCl solutions. Corros Sci 53:113–121

    Article  CAS  Google Scholar 

  • Xiao L, Chen B, Zhong H, Guo QW (2013) Electro-generation of the microbe fuel cell for pyrite-MnO2 in the presence of Acidithiobacillus ferrooxidans. Appl Mechan Mater 373-375:2030–2033

    Article  Google Scholar 

  • Xie SY, Wang RB, Zheng HH (2012) Analysis on the acid rain from 2005 to 2011 in China. Environ Monitor Forewarn 4(5):33–37 (In Chinese with English abstract)

    Google Scholar 

  • Yamaguchi K, Tomiyama S, Metugi H, Ii H, Ueda A (2015) Flow and geochemical modeling of drainage from Tomitaka mine, Miyazaki, Japan. J Environ Sci 36:130–143

    Article  Google Scholar 

  • Yin Q, Kelsall GH, Vaughan DJ, Welham NJ (1999) Rotating ring (Pt)-disc (FeS2) electrode behavior in hydrochloric solutions. Colloid Interf Sci 210:375–383

    Article  CAS  Google Scholar 

  • Zhang XY, Jiang H, Jin JX, Xu XH, Zhang QX (2012) Analysis of acid rain patterns in northeastern China using a decision tree method. Atmos Environ 46(1):590–596

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the 135 Program of the Institute of Geochemistry, CAS, and the 863 High Technology Research and Development Program of China (2010AA09Z207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyou Liu.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, K., Li, H., Wang, L. et al. Pyrite oxidation under simulated acid rain weathering conditions. Environ Sci Pollut Res 24, 21710–21720 (2017). https://doi.org/10.1007/s11356-017-9804-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9804-9

Keywords

Navigation