Skip to main content

Advertisement

Log in

Cadmium phytoremediation potential of turnip compared with three common high Cd-accumulating plants

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phytoextraction is a phytoremediation technique used for remediating polluted soils and it greatly relies on the plants’ capacities to accumulate contaminants. Turnip is a high cadmium (Cd)-accumulating plant. We compared the Cd tolerance, growth, and Cd accumulation characteristics of two turnip landraces with three additional commonly known high Cd-accumulating species to systematically estimate its Cd phytoremediation potential. Results showed that the turnips could tolerate relatively lower Cd concentrations than other plants. Growth characteristics analyses indicated that the turnips initially grew rapidly and then gradually slowed down, and their photosynthetic parameters indicated that biomass accumulation was easily affected by light. However, the Cd uptake and translocation capacities of the two turnip landraces were higher than those of Phytolacca americana Linn. and Bidens pilosa Linn. but close to that of Brassica napus Linn.. Ultimately, large amounts of Cd accumulated in turnips during early growth and slightly increased as the fleshy roots increased in size. Based on these findings, the present turnip landraces have potential for soil remediation, but additional research is needed before these landraces can be practically used. Moreover, turnips are good candidates for studying the molecular mechanism of high Cd accumulation in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AG:

Aboveground

AQE:

Apparent quantum efficiency

DW:

Dry weight

EC:

Enrichment coefficient

LCP:

Light compensation point

LSP:

Light saturation point

P max :

Maximum net photosynthetic rate

R d. :

Dark respiration rate

RTI:

Root tolerance index

SSI:

Seedling survival index

TF:

Translocation factor

TT:

Tolerance threshold

UG:

Underground

References

  • Abd Allah EF, Abeer H, Alqarawi AA, Alwathnani HA (2015) Alleviation of adverse impact of cadmium stress in sunflower (Helianthus Annuus L.) by arbuscular mycorrhizal fungi. Pak J Bot 47:785–795

    CAS  Google Scholar 

  • Adiloglu S, Adiloglu A, Acikgoz FE, Yeniaras T, Solmaz Y (2016) Phytoremediation of cadmium from soil using patience dock (Rumex patientia L.) Anal Lett 49:601–606

    Article  CAS  Google Scholar 

  • Amna AN, Masood S, Mukhtar T, Kamran MA, Rafique M, Munis MFH, Chaudhary HJ (2015) Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with glomus intraradices. Environ Monit Assess 187

  • Arthur E, Crews H, Morgan C (2000) Optimizing plant genetic strategies for minimizing environmental contamination in the food chain. Int J Phytoremediat 2:1–21

    Article  Google Scholar 

  • Baba H, Tsuneyama K, Yazaki M, Nagata K, Minamisaka T, Tsuda T, Nomoto K, Hayashi S, Miwa S, Nakajima T, Nakanishi Y, Aoshima K, Imura J (2013) The liver in itai-itai disease (chronic cadmium poisoning): pathological features and metallothionein expression. Modern Pathol 26:1228–1234

    Article  CAS  Google Scholar 

  • Bae J, Benoit DL, Watson AK (2016) Effect of heavy metals on seed germination and seedling growth of common ragweed and roadside ground cover legumes. Environ Pollut 213:112–118

    Article  CAS  Google Scholar 

  • Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, Mohammad A (2016) Phytoremediation potential of Lemna minor L. for heavy metals. Int J Phytoremediat 18:25–32

    Article  Google Scholar 

  • Broadley MR, Willey NJ, Wilkins JC, Baker AJM, Mead A, White PJ (2001) Phylogenetic variation in heavy metal accumulation in angiosperms. New Phytol 152:9–27

    Article  CAS  Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi-Caerulescens and metal-tolerant Silene-Vulgaris grown on sludge-amended soils. Environ Sci Technol 29:1581–1585

    Article  CAS  Google Scholar 

  • Buendia-Gonzalez L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera-Diaz CE, Vernon-Carter EJ (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101:5862–5867

    Article  CAS  Google Scholar 

  • De Franciscis P, Ianniello R, Labriola D, Ambrosio D, Vagnetti P, Mainini G, Trotta C, Mele D, Campitiello MR, Caprio F (2015) Environmental pollution due to cadmium: measure of semen quality as a marker of exposure and correlation with reproductive potential. Clin Exp Obstet Gyn 42:767–770

    Google Scholar 

  • Ehsan S, Ali S, Noureen S, Mahmood K, Farid M, Ishaque W, Shakoor MB, Rizwan M (2014) Citric acid assisted phytoremediation of cadmium by Brassica napus L. Ecotox Environ Safe 106:164–172

    Article  CAS  Google Scholar 

  • Fu XP, Dou CM, Chen YX, Chen XC, Shi JY, Yu MG, Xu J (2011) Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J Hazard Mater 186:103–107

    Article  CAS  Google Scholar 

  • Gao L, Peng KJ, Xia Y, Wang GP, Niu LY, Lian CL, Shen ZG (2013) Cadmium and manganese accumulation in Phytolacca americana L. and the roles of non-protein thiols and organic acids. Int J Phytoremediat 15:307–319

    Article  CAS  Google Scholar 

  • Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185

    Article  CAS  Google Scholar 

  • Hashem A, Abd Allah EF, Alqarawi AA, Al Hugail AA, Egamberdieva D, Wirth S (2016) Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J Biol Sci 23:272–281

    Article  CAS  Google Scholar 

  • He QX (2013) Research progress of screening cadmium hyperaccumulators. Environmental Protection and Circular Economy 33:46–49

    CAS  Google Scholar 

  • Klink A (2017) A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation. Environ Sci Pollut R 24:3843–3852

    Article  CAS  Google Scholar 

  • Li X, Zhang XM, Yang Y, Li BQ, Wu YS, Sun H, Yang YP (2016) Cadmium accumulation characteristics in turnip landraces from China and assessment of their phytoremediation potential for contaminated soils. Front Plant Sci 7:1862

    Google Scholar 

  • Lin K, Zhang NW, Severing EI, Nijveen H, Cheng F, Visser RGF, Wang XW, de Ridder D, Bonnema G (2014) Beyond genomic variation—comparison and functional annotation of three Brassica rapa genomes: a turnip, a rapid cycling and a Chinese cabbage. BMC Genomics 15

  • Liu XM, Nie JH, Wang QR (2002) Research on lead uptake and tolerance in six plants. Acta Phytoecologica Sinica 26:533–537

    Article  CAS  Google Scholar 

  • Liu XQ, Peng KJ, Wang AG, Lian CL, Shen ZG (2010) Cadmium accumulation and distribution in populations of Phytolacca americana L. and the role of transpiration. Chemosphere 78:1136–1141

    Article  CAS  Google Scholar 

  • Moreno-Caselles J, Moral R, Perez-Espinosa A, Perez-Murcia MD (2000) Cadmium accumulation and distribution in cucumber plant. J Plant Nutr 23:243–250

    Article  CAS  Google Scholar 

  • Nie YP, Wang XW, Wan JR, Yin YY, Xu WP, Yang WT (2016) Research progress on heavy metal (Pb, Zn, Cd, Cu) hyperaccumulating plants and strengthening measures of phytoremediation. Ecological Science 35:174–182

    Google Scholar 

  • Parveen T, Inam A, Mehrotra I (2013) Treated municipal wastewater for irrigation: effect on turnip (Brassica rapa). Desalin Water Treat 51:5430–5443

    Article  CAS  Google Scholar 

  • Peng KJ, Luo CL, You WX, Lian CL, Li XD, Shen ZG (2008) Manganese uptake and interactions with cadmium in the hyperaccumulator—Phytolacca americana L. J Hazard Mater 154:674–681

    Article  CAS  Google Scholar 

  • Pesko M, Kral'ova K (2012) Cadmium, nickel and mercury accumulation and some physiological and biochemical responses of hydroponically cultivated rapeseed (Brassica Napus L.) plants. Fresenius Environ Bull 21:3675–3684

    CAS  Google Scholar 

  • Pielichowska M, Wierzbicka M (2004) Uptake and localization of cadmium by Biscutella laevigata, a cadmium hyperaccumulator. Acta Biol Cracov Ser Bot 46:57–63

    Google Scholar 

  • Rossi G, Figliolia A, Socciarelli S, Pennelli B (2002) Capability of Brassica napus to accumulate cadmium, zinc and copper from soil. Acta Biotechnol 22:133–140

    Article  CAS  Google Scholar 

  • Sandrin TR, Maier RM (2002) Effect of pH on cadmium toxicity, speciation, and accumulation during naphthalene biodegradation. Environ Toxicol Chem 21:2075–2079

    Article  CAS  Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A, Rehim A, Hussain S (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  Google Scholar 

  • Simmons RW, Pongsakul P, Saiyasitpanich D, Klinphoklap S (2005) Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: implications for public health. Environ Geochem Hlth 27:501–511

    Article  CAS  Google Scholar 

  • Sterckeman T, Douay F, Proix N, Fourrier H (2000) Vertical distribution of Cd, Pb and Zn in soils near smelters in the north of France. Environ Pollut 107:377–389

    Article  CAS  Google Scholar 

  • Sun YB, Zhou QX, Liu WT, An J, Xu ZQ, Wang L (2009a) Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: a potential Cd-hyperaccumulator and As-excluder Bidens pilosa L. J Hazard Mater 165:1023–1028

    Article  CAS  Google Scholar 

  • Sun YB, Zhou QX, Wang L, Liu WT (2009b) Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazard Mater 161:808–814

    Article  CAS  Google Scholar 

  • Tauqeer HM, Ali S, Rizwan M, Ali Q, Saeed R, Iftikhar U, Ahmad R, Farid M, Abbasi GH (2016) Phytoremediation of heavy metals by Alternanthera bettzickiana: growth and physiological response. Ecotox Environ Safe 126:138–146

    Article  CAS  Google Scholar 

  • Thakur S, Sharma SS (2016) Characterization of seed germination, seedling growth, and associated metabolic responses of Brassica juncea L. cultivars to elevated nickel concentrations. Protoplasma 253:571–580

    Article  CAS  Google Scholar 

  • Wang XW et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–U157

    Article  CAS  Google Scholar 

  • Wei SH, Zhou QX, Koval PV (2006) Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation. Sci Total Environ 369:441–446

    Article  CAS  Google Scholar 

  • Xiao CW, Luo XY, Tian Y, Lu XY (2013) Research progress of bioremediation of heavy metal cadmium pollution. Chemistry & Bioengineering 30:1–4

    Google Scholar 

  • Yan ML, Liu LL, Wang HH, Xiang YC, Feng T (2009) Accumulation characteristics of cadmium for three plants in red soil. J Agro-Environ Sci 28:72–77

    CAS  Google Scholar 

  • Yan XH, Hu WH, Wang N, Zou T (2013) Model fitting on light response curve of photosynthesis for Phytolacca americana. Journal of Jinggangshan University (Natural Science) 34:28–33

    Google Scholar 

  • Ye ZP (2007) A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica 45:637–640

    Article  CAS  Google Scholar 

  • Ye ZP, Zhao ZH (2009) Effects of shading on the photosynthesis and chlorophyll content of Bidens pilosa. Chinese Journal of Ecology 28:19–22

    Google Scholar 

  • Zheng SY, Shang XF (2006) Research progress of cadmium pollution in soil. Anhui Agri Sci Bull 12:43–44

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (31590823, 41271058). We thank Dr. Wei Zhang for his help in the calculation of photosynthetic parameters.

Author information

Authors and Affiliations

Authors

Contributions

Y.P. Yang and X. Li conceived and designed the experiments. B.Q. Li collected the seeds. X. Li, X.M. Zhang, B.Q. Li, and Y.S. Wu performed the experiments. X. Li analyzed the data and wrote the manuscript. Y.P. Yang and H. Sun revised the manuscript.

Corresponding author

Correspondence to Yongping Yang.

Ethics declarations

Conflict of interest statement

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Elena Maestri

A.Electronic supplementary material

ESM 1

(PDF 482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, X., Li, B. et al. Cadmium phytoremediation potential of turnip compared with three common high Cd-accumulating plants. Environ Sci Pollut Res 24, 21660–21670 (2017). https://doi.org/10.1007/s11356-017-9781-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9781-z

Keywords

Navigation