Skip to main content
Log in

Phytoremediation potential of Pterocypsela laciniata as a cadmium hyperaccumulator

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

To identify new cadmium (Cd) hyperaccumulators, the artificially high soil Cd concentration method was used to screen six common farmland weeds. Among them, only Pterocypsela laciniata (Houtt.) C. Shih showed characteristics of a Cd hyperaccumulator and was selected for further studies. In pot experiments, soil Cd concentrations of 5, 10, and 25 mg kg−1 increased the biomass and photosynthetic pigment concentrations in P. laciniata when compared with the control, whereas 75 and 100 mg kg−1 decreased them (the maxima were at 10 mg kg−1 soil Cd). The antioxidant enzyme activities and the soluble protein concentrations of P. laciniata showed similar trends as biomass. The Cd concentrations in roots and shoots of P. laciniata increased as soil Cd concentration increased. When the soil Cd concentration was 50 mg kg−1, the Cd concentration in the shoots of P. laciniata was 116 mg kg−1 (the critical value for Cd hyperaccumulators is 100 mg kg−1). Both the root and shoot bioconcentration factors of P. laciniata were larger than 1.0, and the translocation factor exceeded 1.0 in almost all treatments. The Cd extractions by the shoots and whole plants of P. laciniata reached maxima at 208 and 375 μg plant−1, respectively. The Cd extractions by P. laciniata were different between two ecotypes. Therefore, P. laciniata is a Cd hyperaccumulator that could remediate Cd-contaminated soils, but the ecotypes should be considered when using P. laciniata for phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ATSDR (2000) ATSDR’s toxicological profiles on CD-ROM. CRC Press, Boca Raton

    Google Scholar 

  • Baker AJM, Mcgrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos GS (eds) Phytoremediation of Contaminated Soil and Water. CRC Press, Boca Raton

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Brooks RR (1998) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration and phytomining. J Environ Qual 28:1045–1045

    Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  • Brown SL, Chancy RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J 59:125–133

    Article  CAS  Google Scholar 

  • Cakmak I, Horst WJ (2006) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plant 83:463–468

    Article  Google Scholar 

  • Calabrese EJ, Baldwin LA (2001) Hormesis: U-shaped dose responses and their centrality in toxicology. Trends Pharmacol Sci 22:285–291

    Article  CAS  Google Scholar 

  • Chaney RL, Malik M, Yin ML, Brown SL, Brewer EP, Angle JS, Baker AJ (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  Google Scholar 

  • Dai XB, Jiang GT, Dai QZ (2015) Planting ramie to repair heavy metal contaminated land. Hunan Agric 8:28–28

    Google Scholar 

  • Davis JM, Svendsgaard DJ (1990) U-shaped dose-response curves: their occurrence and implications for risk assessment. J Toxicol Environ Health 30:71–83

    Article  CAS  Google Scholar 

  • de la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159–1168

    Article  Google Scholar 

  • Fornazier RF, Ferreira RR, Vitória AP, Molina SMG, Lea PJ, Azevedo RA (2002) Effects of cadmium on antioxidant enzyme activities in sugar cane. Biol Plant 45:91–97

    Article  CAS  Google Scholar 

  • Gao JF (2006) Experiment guide of plant physiology. Higher Education Press, Beijing

    Google Scholar 

  • Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    Article  CAS  Google Scholar 

  • Guo SL, Li YH (1996) The basic characteristics of weeds and their role in the biodiversity of cultivated land. Resour Sci 18:48–52

    Google Scholar 

  • Jia L, Liu ZL, Chen W, Ye Y, Yu S, He XY (2015) Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, Lonicera japonica Thunb. J Plant Growth Regul 34:13–21

    Article  CAS  Google Scholar 

  • Kabir M, Iqbal MZ, Shafiq M, Farooqi ZR (2010) Effects of lead on seedling growth of Thespesia populnea L. Plant Soil Environ 56:194–199

    Article  CAS  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  Google Scholar 

  • Li J, Zhou YW, Chen S, Gao XJ (2015) Actualities, damage and management of soil cadmium pollution in China. Anhui Agric Sci Bull 21:104–107

  • Lin LJ, Jin Q, Liu YJ, Ning B, Liao MA, Luo L (2014a) Screening of a new cadmium hyperaccumulator, Galinsoga parviflora, from winter farmland weeds using the artificially high soil cadmium concentration method. Environ Toxicol Chem 33:2422–2428

    Article  CAS  Google Scholar 

  • Lin LJ, Liao MA, Mei LY, Chen J, Liu J, Luo L, Liu Y (2014b) Two ecotypes of hyperaccumulators and accumulators affect cadmium accumulation in cherry seedlings by intercropping. Environ Prog Sustain Energy 33:1251–1257

    CAS  Google Scholar 

  • Liu YJ, Lin LJ, Jin Q, Zhu XM (2015) Cadmium accumulation and tolerance in the Cd-accumulator Capsella bursa-pastoris. Environ Prog Sustain Energy 34:663–668

    Article  CAS  Google Scholar 

  • Lloyd-Thomas DH (1995) Heavy metal hyperaccumulation by Thlaspi caerulescens. PhD thesis, University of Sheffield

  • López-Millán A-F, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385

    Article  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Miyahara T, Miyakoshi M, Kozuka H (1980) Effect of cadmium on bone resorption in cultured fetal bones. Bull Environ Contam Toxicol 25:294–297

    Article  CAS  Google Scholar 

  • Nie FH (2005) New comprehensions of hyperaccumulator. Ecol Environ 14:136–138

    Google Scholar 

  • Pereira GJG, Molina SMG, Lea PJ (2002) Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil 239:123–132

    Article  CAS  Google Scholar 

  • Polle A (2001) Dissecting the superoxide dismutase-ascorbate peroxidase-glutathione pathway in chloroplasts by metabolic modeling. Computer simulations as a step towards flux analysis. Plant Physiol 126:445–462

    Article  CAS  Google Scholar 

  • Poschenrieder C, Cabot C, Martos S, Gallego B, Barceló J (2013) Do toxic ions induce hormesis in plants. Plant Sci 212:15–25

    Article  CAS  Google Scholar 

  • Rastmanesh F, Moore F, Keshavarzi B (2010) Speciation and phytoavailability of heavy metals in contaminated soils in Sarcheshmeh area, Kerman Province, Iran. Bull Environ Contam Toxicol 85:515–519

    Article  CAS  Google Scholar 

  • Rau S, Miersch J, Neumann D, Weber E, Krauss GJ (2007) Biochemical responses of the aquatic moss Fontinalis antipyretica to Cd, Cu, Pb and Zn determined by chlorophyll fluorescence and protein levels. Environ Exp Bot 59:299–306

    Article  CAS  Google Scholar 

  • Reddy JS, Mishra AM, Behari S, Husain M, Gupta V, Rastogi M, Gupta RK (2006) The role of diffusion-weighted imaging in the differential diagnosis of intracranial cystic mass lesions: a report of 147 lesions. Surg Neurol 66:246–250

    Article  Google Scholar 

  • Shi Z (1997) Compositae. In: Hu XX, Qian CS, Chen HY (eds) Flora Republicae Popularis Sinicae. Science Press of China, Beijing

    Google Scholar 

  • Solís-Domínguez FA, González-Chávez MC, Carrillo-González R, Rodríguezvázquez R (2007) Accumulation and localization of cadmium in Echinochloa polystachya grown within a hydroponic system. J Hazard Mater 141:630–636

    Article  Google Scholar 

  • Sun Y, Zhou Q, Wang L, Liu W (2009) Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. J Hazard Mater 161:808–814

    Article  CAS  Google Scholar 

  • Vitória AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:701–710

    Article  Google Scholar 

  • Wan Y, Luo SL, Chen JL, Xiao X, Chen L, Zeng GM, Liu CB, He YJ (2012) Effect of endophyte-infection on growth parameters and Cd-induced phytotoxicity of Cd-hyperaccumulator Solanum nigrum L. Chemosphere 89:743–750

    Article  CAS  Google Scholar 

  • Wei S, Clark G, Doronila AI, Jin J, Monsant AC (2013) Cd hyperaccumulative characteristics of Australia ecotype Solanum nigrum L. and its implication in screening hyperaccumulator. Int J Phytoremediation 15:199–205

    Article  CAS  Google Scholar 

  • Ying RR, Qiu RL, Tang YT, Hu PJ, Qiu H, Chen HR, Shi TH, Morel JL (2010) Cadmium tolerance of carbon assimilation enzymes and chloroplast in Zn/Cd hyperaccumulator Picris divaricata. J Plant Physiol 167:81–87

    Article  CAS  Google Scholar 

  • Zhang XF, Xia HP, Li ZA, Zhuang P, Gao B (2011) Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. J Hazard Mater 189:414–419

    Article  CAS  Google Scholar 

  • Zhao YD, Pan YZ, Liu BY, Yang H, Hou Y, Zhang JF, Cai L (2012) Pilea cadierei Gagnep. et Guill’s growth and accumulation under single and combined pollution of Cd and Pb. J Agro-Environ Sci 31:48–53

  • Zhu HX, Yang XY, Ge CL, Gong Z, Wang ZG, Luo SS, Me F (2004a) Effect of heavy metals on the peroxidase isoenzymes in rice. Acta Agric Nucl Sin 18:233–236

  • Zhu XM, Yang WY, Shao JR, Cheng XH (2004b) The research on milling quality variations of high-quality rice in different ecological regions of Sichuan. Seed 23(3–6):37

    Google Scholar 

Download references

Acknowledgements

We thank Alex Boon, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of the draft of this manuscript.

Funding

This work was financially supported by the Project of Sichuan Provincial Education Department (17ZB0342).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming’an Liao.

Additional information

Responsible editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, L., Lin, L., Liao, M. et al. Phytoremediation potential of Pterocypsela laciniata as a cadmium hyperaccumulator. Environ Sci Pollut Res 26, 13311–13319 (2019). https://doi.org/10.1007/s11356-019-04702-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-04702-4

Keywords

Navigation