Skip to main content
Log in

Oxidative damage to Pseudomonas aeruginosa ATCC 27833 and Staphylococcus aureus ATCC 24213 induced by CuO-NPs

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The cytotoxicity of nanoparticles (NPs) and their properties are important issues in nanotechnology research. Particularly, NPs affect the metabolism of microorganisms due to NP interactions with some biomolecules. In order to assess the mechanisms underlying NPs toxicity, we studied the damage caused by copper oxide nanoparticles (CuO-NPs) on Staphylococcus aureus ATCC 24213 and Pseudomonas aeruginosa ATCC 27833. Spherical CuO-NPs characterized by their diameter (13 ± 3 nm) were synthesized with a maximum of 254 nm. These NPs reduced cell viability, with a minimum inhibitory concentration (MIC) of 500 and 700 ppm for Staphylococcus aureus and Pseudomonas aeruginosa, respectively. Surfactant was added to reduce the NP agglomeration, but it did not present any effect. The mechanism of CuO-NPs as antimicrobial agent was assessed by analyzing solubilized Cu2+, quantifying DNA release in the culture media, and measuring intracellular reactive oxygen species (ROS). CuO-NPs induced severe damage on cells as revealed by confocal optical microscopy and scanning electron microscopy (SEM). Our results indicated that CuO-NPs interacted with bacteria, triggering an intracellular signaling network which produced oxidative stress, leading to ROS generation. Finally, we concluded that CuO-NPs exhibited higher antibacterial activity on Gram-negative bacteria than on Gram-positive ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anaya MN, Faghihzadeh F, Ganji N, Bothun G, Craver VO (2016) Comparative study between chemostat and batch reactors to quantify membrane permeability changes on bacteria exposed to silver nanoparticles. Sci Total Environ 565:841–848

    Article  CAS  Google Scholar 

  • Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E (2012a) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Biomed Mater. doi:10.1002/smll.201200772

  • Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E (2012b) Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small 8(21):3326–3337. doi:10.1002/smll.201200772

    Article  CAS  Google Scholar 

  • Askarinezhad A, Morsali A (2008) Synthesis and characterization of CdCO3 and CdO nanoparticles by using a sonochemical method. Mater Lett 62:478–482

    Article  Google Scholar 

  • Aysaa NH, Salmanb HD (2016) Antibacterial activity of modified zinc oxide nanoparticles against Pseudomonas Aeruginosa isolates of burn infections. World Sci News 33:1–14

    Google Scholar 

  • Azam A, Ahmed AS, Oves M, Khan M, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomedicine 7:3527–3535

    Article  CAS  Google Scholar 

  • Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. Sci Total Environ 409:1603–1608

    Article  CAS  Google Scholar 

  • Batrakova EV, Kabonov AV (2008) Pluronic block copolymers: evolution of drug delivery concept from inert Nanocarriers to biological response modifiers. Control Release 130(2):98–106

    Article  CAS  Google Scholar 

  • Bijanzadeh AR, Vakili MR, Khordad R (2012) Astudy of the surface plasmon absorption band for nanoparticles. Int J Phys Sci 7(12):1943–1948

    CAS  Google Scholar 

  • Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A (2010) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47

    Article  CAS  Google Scholar 

  • Bogoslovskaja OA, Rakhmetova AA, Ovsyannikova MN, Olkhovskaya IP, Gluschenko NN (2014) Antimicrobial effect of copper nanoparticles with differing dispersion and phase composition. Nanotechnol Russia 9(1):82–86

    Article  CAS  Google Scholar 

  • Bondarenko O, Ivask A, Käkinen A, Kahru A (2012) Sub-toxic effects of CuO nanoparticles on bacteria: kinetics, role of cu ions and possible mechanisms of action. Environ Pollut 169:81–89

    Article  CAS  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

    Article  CAS  Google Scholar 

  • Brayner R (2008) The toxicological impact of nanoparticles. Nano Today 3:48–55

    Article  Google Scholar 

  • Chang Y, Zhang M, Xia L, Zhang J, Xin G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials 5:2850–2871

    Article  CAS  Google Scholar 

  • Chávez-Calderón A, Paraguay-Delgado F, Orrantia-Borunda E, Luna-Velazco A (2016) Size effect of SnO2 nanoparticles on bacteria toxicity and their membrane damage. Chemosphere 165:33–40

    Article  Google Scholar 

  • Chen PP, Mwakwari SC, Oyelere AK (2008) Gold nanoparticles: from nanomedicine to nanosensing. Review. Nanotechnol Sci Appl 1:45–65

    Article  CAS  Google Scholar 

  • Choi O, Hu Z (2009) Role of reactive oxygen species in determining nitrification inhibition bymetallic/oxide nanoparticles. J Environ Eng 135(12):1365–1370

    Article  CAS  Google Scholar 

  • Christy AJ, Nehru LC, Umadevi M (2013) A novel combustion method to prepare CuOnanorods and its antimicrobial and photocatalytic activities. Powder Technol 235:783–786

    Article  CAS  Google Scholar 

  • Concha-Guerrero SI, Souza-Brito EM, Piñón-Castillo HA, Tarango-Rivero SH, Caretta CA, Luna-Velazco A, Duran R, Orrantia-Borunda E (2014) Effect of CuO nanoparticles over isolated bacterial strains from agricultural soil. J Nanomater 2014:1–13

    Article  Google Scholar 

  • Cronholm P, Karlsson HL, Hedberg J, Lowe T, Winnberg L, Elihn K, Odnevall WI, Möller L (2013) Intracellular uptake and toxicity of ag- and CuOnanoparticles– a comparison between nanoparticles and their corresponding metal ion. Small 9:970–982

    Article  CAS  Google Scholar 

  • Cui Y, Zhao Y, Tian Y, Zhang W, Lu X, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33(7):2327–2333

    Article  CAS  Google Scholar 

  • Dasari TP, Pathakoti P, Hwang H (2013) Determination of the mechanism of photoinduced toxicity of selected metal oxide nanoparticles (ZnO, CuO, Co3O4 and TiO2) to E. coli bacteria. J Environ Sci 25(5):882–888

    Article  CAS  Google Scholar 

  • De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G, Meschini S (2010) Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharmacol 246:116–127

    Article  Google Scholar 

  • Dimkpa CO, Calder A, Britt DW, McLean JE, Anderson AJ (2011) Responses of a soil bacterium, Pseudomonas chlororaphisO6 to commercial metal oxide nanoparticles compared with responses tometal ions. Environ Pollut 159(7):1749–1756

    Article  CAS  Google Scholar 

  • Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AVR (2012) Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloid Surf 94:143–150

    Article  CAS  Google Scholar 

  • Ebrahimnia-Bajestan E, Niazmand H, Duangthongsuk W, Wongwises S (2011) Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. Int J Heat Mass Transf 54(19–20):4376–4388

    Article  CAS  Google Scholar 

  • Elsaesser A, Howard C (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137

    Article  CAS  Google Scholar 

  • Fahmy B, Cormier SA (2009) Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicol In Vitro 23:1365–1371

    Article  CAS  Google Scholar 

  • Garcia-Saucedo C, Field JA, Otero-Gonzalez L, Sierra-Alvarez R (2011) Low toxicity of HfO2, SiO2, Al2O3 and CeO2 nanoparticles to the yeast, Saccharomyces cerevisiae. J Hazard Mater 192(3):1572–1579. doi:10.1016/j.jhazmat.2011.06.081

    Article  CAS  Google Scholar 

  • Giannousi K, Hatzivassiliou E, Mourdikoudis S, Vourlias G, Pantazaki A, Dendrinou-Samara C (2016) Synthesis and biological evaluation of PEGylated CuO nanoparticles. J Inorg Biochem 164:82–90

  • Guo Z, Ng HW, Yee GL, Hahn HT (2009) Differential scanning calorimetry investigation on vinyl ester resin curing process for polymer nanocomposite fabrication. J Nanosci Nanotechnol 9(5):3278–3285

    Article  CAS  Google Scholar 

  • Gupta P, Ramrakhiani M (2009) Influence of the particle size on the optical properties of CdSe nanoparticles. Open Nanosci J 3:15–19

    Article  CAS  Google Scholar 

  • Handy RD, Kammer FVD, Lead JR, Hassellov M, Owen R, Crane M (2008) Theecotoxicity and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314

    Article  CAS  Google Scholar 

  • Hou J, Wang X, Hayat T, Wang X (2017) Ecotoxicological effects and mechanism of CuO nanoparticles to individual organisms. Environ Pollut 221:209–217. doi:10.1016/j.envpol.2016.11.066

    Article  CAS  Google Scholar 

  • Ivanov IE, Kintz EN, Porter LA, Goldberg JB, Burnham NA, Camesano TA (2011) Relating the physical properties of Pseudomonas Aeruginosa lipopolysaccharides to virulence by atomic force microscopy. J Bacteriol 193(5):1259–1266. doi:10.1128/JB.01308-10

    Article  CAS  Google Scholar 

  • Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, Vija H, Kakinen K, Titma T, Heinlaan M, Visnapuu M, Koller D, Kisand V, Kahru A (2014) Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9(7):e102108. doi:10.1371/journal.pone.0102108

    Article  Google Scholar 

  • Jain TK, Morales MA, Sahoo SK, Leslie-Pelecky DL, Labhasetwar V (2005) Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol Pharm 2(3):194–205. doi:10.1021/mp0500014

    Article  CAS  Google Scholar 

  • Javed R, Ahmed M, Haq I u, Nisa S, Zia M (2017) PVP and PEG doped CuO nanoparticles are more biologically active: antibacterial, antioxidant, antidiabetic and cytotoxic perspective. Mater Sci Eng C 79:108–115. doi:10.1016/j.msec.2017.05.006

    Article  CAS  Google Scholar 

  • Jesuvathy Sornalatha D,  Bhuvaneswari S, Murugesan S, Murugakoothan P (2015) Solochemical synthesis and characterization of ZnO nanostructures with different morphologies and their antibacterial activity. Optik 126(1):63–67

  • Ji Z, Jin X, George S, Xia T, Meng H, Wang X, Suarez E, Zhang H, Hoek EM, Godwin H, Nel A, Zink JI (2010) Dispersion and stability optimization of TiO2 nanoparticles in cell culture media. Environ Sci Technol 44(19):7309–7314

    Article  CAS  Google Scholar 

  • Joh DY, Kinder J, Herman LH, Ju SY, Segal MA, Johnson JN, Chan KL, Park J (2011) Single-walled carbon nanotubes as excitonic optical wires. Nat Nanotechol 6:51–56

    Article  CAS  Google Scholar 

  • Joost U, Juganson K, Visnapuu M, Mortimer M, Kahru A, Nommiste E, Joost U, Kisand V, Ivask A (2015) Photocatalytic antibacterial activity of nano-TiO2 (anatase)-based thin films: effects on Escherichia coli cells and fatty acids. J Photochem Photobiol B 142:178–185

    Article  CAS  Google Scholar 

  • Junqua M, Biolley JP, Pie S, Kanoun M, Duran R, Goulas P (2000) In vivo occurrence of carbonyl residues in Phaseolus vulgaris proteins as a direct consequence of a chronic ozone stress. Plant Physiol Biochem 38(11):853–861

    Article  CAS  Google Scholar 

  • Kang EB, Sharker SMd, In I, Park SY (2016) Pluronic mimicking fluorescent carbon nanoparticles conjugated with doxorubicin via acid-cleavable linkage for tumor-targeted drug delivery and bioimaging. J Ind Eng Chem 43:150-157

  • Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  CAS  Google Scholar 

  • Karlsson HL, Cronholm P, Hedberg Y, Tornberg M, Battice LD, Svedhem S, Wallinder IO (2013) Cell membrane damage and protein interaction induced by copper containing nanoparticles—importance of the metal release process. Toxicology 313:59–69

    Article  CAS  Google Scholar 

  • Kashmiri ZN, Mankar SA (2014) Free radicals and oxidative stress in bacteria. Int J Curr Microbiol App Sci 3(9):34–40

    CAS  Google Scholar 

  • Kida T, Oka T, Nagano M (2007) Synthesis and application of stable copper oxide nanoparticle suspensions for Nanoparticulate film fabrication. J Am Ceram Soc 90(1):107–110

    Article  CAS  Google Scholar 

  • Kurzhals S, Gal N, Zirbs R, Reimhult E (2017) Aggregation of thermoresponsive core-shell nanoparticles: influence of particle concentration, dispersant molecular weight and grafting. J Colloid Interface Sci 500:321–332

    Article  CAS  Google Scholar 

  • Laha D, Pramanik A, Laskar A, Jana M, Pramanik P, Karmakar P (2014) Shape dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage. Mater Res Bull 59:185–191

    Article  CAS  Google Scholar 

  • Lanje AS, Sharma SJ, Pode RB, Ningthoujam RS (2010) Synthesis and optical characterization of copper oxide nanoparticles. Adv Appl Sci Res 1(2):36–40

    CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Van der Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  • Li Y, Liang J, Tao Z, Chen J (2007) CuO particles and plates: synthesis and gas-sensor application. Mater Res Bull 43:2380–2385

    Article  Google Scholar 

  • Ma R, Levard C, Marinakos SM, Cheng Y, Liu J et al (2012) Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 46:752–759

    Article  CAS  Google Scholar 

  • Ma H, Wallis LK, Diamond S, Li S, Canas-Carrell J, Parra A (2014) Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution. Environ Pollut 193:165–172

    Article  CAS  Google Scholar 

  • Mahapatra O, Bhagat M, Gopalakrishnan C, Arunachalam KD (2008) Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Exp Nanosci 3(3):185–193

  • Maldonado J, Solé A, Puyen ZM, Esteve I (2011) Selection of bioindicators to detect lead pollution in Ebro delta microbial mats, using high-resolution microscopic techniques. Aquat Toxicol 104(1–2):135–144

    Article  CAS  Google Scholar 

  • Margaritelis NV, Cobley JN, Paschalis V, Veskoukis AS, Theodorou AA, Kyparos A, Nikolaidis MG (2016) Going retro: oxidative stress biomarkers in modern redox biology. Free Radic Biol Med 98:2–12

    Article  CAS  Google Scholar 

  • Midander K, Cronholm P, Karlsson HL, Elihn K, Möller L, Leygraf C, Wallinder IO (2009) Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study. Small 5:389–399

    Article  CAS  Google Scholar 

  • Moritz M, Geszke M (2013) Thenewest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J 228:596–613

    Article  CAS  Google Scholar 

  • Nateche F, Martin A, Baraka S, Palomino JC, Khaled S, Portaels F (2009) Application of the resazurinmicrotitre assay for detection of multidrug resistance in mycobacterium tuberculosis in Algiers. J Med Microbiol 55:857–860

    Article  Google Scholar 

  • Otero-Gonzalez L, Garcia-Saucedo C, Field JA, Sierra-Alvarez R (2013) Toxicity of TiO(2), ZrO(2), Fe(0), Fe(2)O(3), and Mn(2)O(3) nanoparticles to the yeast, Saccharomyces cerevisiae. Chemosphere 93(6):1201–1206. doi:10.1016/j.chemosphere.2013.06.075

    Article  CAS  Google Scholar 

  • Pisanic TR, Jin S, Shubayev VI (2009) Nanotoxicity: from in vivo and in vitro models to health risks. John Wiley & Sons, Ltd., London, pp 397–425

    Book  Google Scholar 

  • Quinteros MA, Aristizábal VC, Dalmasso PR, Paraje MG, Páez PL (2016) Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol in Vitro 36:216–223

    Article  CAS  Google Scholar 

  • Raffi M, Mehrwan S, Bhatti TM et al (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60(1):75–80

    Article  CAS  Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028

    Article  CAS  Google Scholar 

  • Rehman S, Mumtaz A, Hasanain SK (2011) Size effects on the magnetic and optical properties of CuO nanoparticles. J Nanopart Res 13:2497–2507

    Article  CAS  Google Scholar 

  • Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterization of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590

    Article  CAS  Google Scholar 

  • Rispoli F, Angelov A, Badia D, Kumar A, Seal S, Shah V (2010) Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli. J Hazard Mater 180:212–216

    Article  CAS  Google Scholar 

  • Rodrigues EC, Morales MA, de Medeiros SN, Suguihiro NM, Baggio-Saitovitch EM (2016) Pluronic® coated sterically stabilized magnetite nanoparticles for hyperthermia applications. J Magn Magn Mater 416:434–440. doi:10.1016/j.jmmm.2016.05.033

    Article  CAS  Google Scholar 

  • Sager TM, Porter DW, Robinson VA, Lindsley WG, Schwegler-Berry DE, Castranova V (2009) Improved method to disperse nanoparticles for in vitro and in vivo investigation of toxicity. Nanotoxicology 1(2):118–129. doi:10.1080/17435390701381596

  • Sau TK, Rogach AL, Jackel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22(16):1805–1825

    Article  CAS  Google Scholar 

  • Simon T, Boca S, Biro D, Baldeck P, Astilean S, (2013) Gold–Pluronic core–shell nanoparticles: synthesis, characterization and biological evaluation. Journal of Nanoparticle Research 15.

  • Song W, Zhang J, Guo J, Zhang J, Ding F, Li L, Sun Z (2010) Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 199:389–397

    Article  CAS  Google Scholar 

  • Sonia S, Jayasudha R, Jayram ND, Kumar PS, Mangalaraj D, Prabagaran SR (2016) Synthesis of hierarchical CuO nanostructures: biocompatibleantibacterial agents for Gram-positive and Gram-negative bacteria. Curr Appl Phys 16:914–921

    Article  Google Scholar 

  • Suttiponparnit K, Jiang J, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P (2010) Role of surface area, primary particles size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Res Lett 6:27

    Google Scholar 

  • Thomasson SA, Thomasson JR (2011) A comparison of CPD (critical point drying) and HMDS (Hexamethyldisilazane) in the preparation of Corallorhiza spp. rhizomes and associated mycorrhizae for SEM (scanning electron microscopy). Trans Kans Acad Sci 114(2):129–134

    Article  Google Scholar 

  • Toduka Y, Toyooka T, Ibuki Y (2012) Flow cytometric evaluation of nanoparticles using side-scattered light and reactive oxygen species—mediated fluorescence—correlation with genotoxicity. Environ Sci Technol 46:7629–7636

    Article  CAS  Google Scholar 

  • Vatankhah C, Saki M, Jafargholineja S (2015) Theoretical and experimental investigation of quantum confinement effect on the blue shift in semiconductor quantum dots. Orient J Chem 31(2):907–912

    Article  CAS  Google Scholar 

  • Wang Z, Li J, Zhao J, Xing B (2011) Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystisaeruginosa as affected by dissolved organic matter. Environ Sci Technol 45(14):6032–6040. doi:10.1021/es2010573

    Article  CAS  Google Scholar 

  • Wang, Z, von dem Bussche, A, Kabadi, PK, Kane, AB, Hurt, RH (2013) Biological and environmental transformations of copper-based nanomaterials. ACS Nano 7, 8715-8727

  • Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE (2008) Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2:2121–2134

    Article  CAS  Google Scholar 

  • Yan L, Zheng YB, Zhao F, Li S, Gao X, Xu B, Weiss PS, Zhao Y (2012) Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem Soc Rev 41:97–114

    Article  CAS  Google Scholar 

  • Yang H, Liu C, Yang DF, Zhang HS, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29:69–78

    Article  Google Scholar 

  • Zhang DX, Gutterman DD (2007) Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 292:H2023–H2031

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, Liu C, Yang S (2014) CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog Mater Sci 60:208–337

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACyT-ConsejoNacional de Ciencia y Tecnología No. 175089 and ECOS NORD 263456. All authors contributed, read, and approved the final manuscript. The authors have declared no conflict of interest. The authors thank W. Antunez-Flores and Ochoa-Gamboa R.A. for technical support in electronic microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ana Laura Ulloa-Ogaz or Hilda Amelia Piñón-Castillo.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Fig. S1

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulloa-Ogaz, A.L., Piñón-Castillo, H.A., Muñoz-Castellanos, L.N. et al. Oxidative damage to Pseudomonas aeruginosa ATCC 27833 and Staphylococcus aureus ATCC 24213 induced by CuO-NPs. Environ Sci Pollut Res 24, 22048–22060 (2017). https://doi.org/10.1007/s11356-017-9718-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9718-6

Keywords

Navigation