Skip to main content
Log in

Effect of Samarium Oxide Nanoparticles Fabricated by Curcumin on Efflux Pump and Virulence Genes Expression in MDR Pseudomonas aeruginosa and Staphylococcus aureus

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The aim of this study was to prepare samarium oxide nanoparticles (Sm2O3NPs) using curcumin and investigation of antimicrobial activities of the prepared NPs. Sm2O3NPs were synthesized using curcumin and characterized by TEM, XRD, FTIR, FESEM, and EDX analyses. Antibacterial and antibiofilm activities of the synthesized NPs against Pseudomonas aeruginosa and Staphylococcus aureus were investigated using well diffusion and crystal violet staining methods, respectively. Finally, the expression of virulence-related genes (toxA, exoS, fnbA, and fnbB) and efflux pump genes (mexA, mexB, norA, and norB) in studied strains were determined using quantitative polymerase chain reaction. Characterization of the synthesized Sm2O3NPs showed that the NPs have a cubic structure with an average size of 32.61 nm, and a pure crystalline phase. The Sm2O3NPs displayed significant antibacterial activity against studied strains. Moreover, Sm2O3NPs efficiently inhibited biofilm formation of P. aeruginosa and S. aureus by 48 ± 3.29 and 53 ± 1%, respectively. Also, the synthesized Sm2O3NPs significantly reduced the expression of toxA, exoS, mexB, fnbA, norA, norB genes, by 44, 27, 31, 53, 40, and 30%, respectively. However, the expression of fnbB and mexA did not significantly change. This study confirmed the promising antibacterial potential of Sm2O3NPs, which could be employed as an effective antibacterial agent against clinically multidrug-resistant strains after further characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. C. Roco (2011). J. Nanopart. Res. 13, 2. https://doi.org/10.1007/s11051-010-0192-z.

    Article  Google Scholar 

  2. I. Khan, K. Saeed, and I. Khan (2019). Arab. J. Chem. 12, 7. https://doi.org/10.1016/j.arabjc.2017.05.011.

    Article  CAS  Google Scholar 

  3. N. Muniyappan, M. Pandeeswaran, and A. Amalraj (2021). Environ Chem Ecotoxicol. https://doi.org/10.1016/j.enceco.2021.01.002.

    Article  Google Scholar 

  4. A. U. Khan, Y. Wei, Z. U. Haq Khan, K. Tahir, A. Ahmad, S. U. Khan, et al. (2016). Sep. Sci. Technol. 51, 1070. https://doi.org/10.1080/01496395.2016.1140203.

    Article  CAS  Google Scholar 

  5. S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang, and Q. Zhang (2007). Green Chem. 9, 8. https://doi.org/10.1039/B615357G.

    Article  CAS  Google Scholar 

  6. F. Ma, S. Xu, Z. Tang, Z. Li, and L. Zhang (2021). Biosaf. Health 3, 1. https://doi.org/10.1016/j.bsheal.2020.09.004.

    Article  Google Scholar 

  7. N. D. Friedman, E. Temkin, and Y. Carmeli (2016). Clin. Microbiol. Infect. 22, 5. https://doi.org/10.1016/j.cmi.2015.12.002.

    Article  Google Scholar 

  8. A. Kumari, R. Panda, M. K. Jha, J. R. Kumar, and J. Y. Lee (2015). Miner. Eng. 79, 102. https://doi.org/10.1016/j.mineng.2015.05.003.

    Article  CAS  Google Scholar 

  9. V. Zepf, and W.L. In Filho, (eds.), (Elsevier, Boston, 2016), pp. 3–17.

  10. Z. Yu, C. Eich, and L. J. Cruz (2020). Front Chem. https://doi.org/10.3389/fchem.2020.00496.

    Article  PubMed  PubMed Central  Google Scholar 

  11. M. Tourbin, A. Al-Kattan, and C. Drouet (2014). Powder Technol. 255, 17–22. https://doi.org/10.1016/j.powtec.2013.08.008.

    Article  CAS  Google Scholar 

  12. S. Dasari, Z. Abbas, P. Kumar, and A. K. Patra (2016). CrystEngComm. 18, 23. https://doi.org/10.1039/c5ce02387d.

    Article  CAS  Google Scholar 

  13. CLSI, Performance Standards for Antimicrobial Susceptibility Testing, 28th ed. (CLSI Supplement M100 Clinical and Laboratory Standards Institute, Wayne, 2018).

    Google Scholar 

  14. L. Wang, C. Hu, and L. Shao (2017). Int. J. Nanomed. 12, 1227. https://doi.org/10.2147/ijn.s121956.

    Article  CAS  Google Scholar 

  15. S. Das and H. R. Dash, Microbial Biotechnology: A Laboratory Manual for Bacterial Systems (Springer, New Delhi, 2014).

    Google Scholar 

  16. M. W. Pfaffl (2001). Nucleic Acids Res. 29, 9. https://doi.org/10.1093/nar/29.9.e45.

    Article  Google Scholar 

  17. R. C. Massey, M. N. Kantzanou, T. Fowler, N. P. J. Day, K. Schofield, E. R. Wann, A. R. Berendt, M. Hook, and S. J. Peacock (2001). Cell Microbiol. 3, 12. https://doi.org/10.1046/j.1462-5822.2001.00157.x.

    Article  Google Scholar 

  18. X. He and J. Ahn (2011). FEMS Microbiol. Lett. 325, 2. https://doi.org/10.1111/j.1574-6968.2011.02429.x.

    Article  CAS  Google Scholar 

  19. N. Fazeli and H. Momtaz (2014). Iran. Red Crescent Med. J. 16, 10. https://doi.org/10.5812/ircmj.15722.

    Article  Google Scholar 

  20. M. R. Arabestani, M. Rajabpour, R. Y. Mashouf, M. Y. Alikhani, and S. M. Mousavi (2014). Arch. Iran. Med. 18, 102–108.

    Google Scholar 

  21. K. Yoneda, H. Chikumi, T. Murata, N. Gotoh, H. Yamamoto, H. Fujiwara, T. Nishino, and E. Shimizu (2005). FEMS Microbiol. Lett. 243, 1. https://doi.org/10.1016/j.femsle.2004.11.048.

    Article  CAS  Google Scholar 

  22. K. Ahmadi, A. Hashemian, E. Bolvardi, and P. Hosseini (2016). Med. Arch. 70, 1. https://doi.org/10.5455/medarh.2016.70.57-60.

    Article  Google Scholar 

  23. B. Aderibigbe (2017). Molecules 22, 8. https://doi.org/10.3390/molecules22081370.

    Article  CAS  Google Scholar 

  24. D. A. Atwood, Inorganic Chemistry (Wiley, Hoboken, 2013).

    Google Scholar 

  25. M. Idrees, S. Sawant, N. Karodia, and A. Rahman (2021). Int. J. Environ. Res. Public Health 18, 14. https://doi.org/10.3390/ijerph18147602.

    Article  CAS  Google Scholar 

  26. S. Chevalier, E. Bouffartigues, J. Bodilis, O. Maillot, O. Lesouhaitier, M. G. J. Feuilloley, N. Orange, A. Dufour, and P. Cornelis (2017). FEMS Microbiol. Lett. 41, 5. https://doi.org/10.1093/femsre/fux020.

    Article  CAS  Google Scholar 

  27. K. Velsankar, S. Sudhahar, G. Parvathy, and R. Kaliammal (2020). Mater. Chem. Phys. 239, 121976. https://doi.org/10.1016/j.matchemphys.2019.121976.

    Article  CAS  Google Scholar 

  28. S. L. Iconaru, A. Groza, S. Gaiaschi, K. Rokosz, S. Raaen, S. C. Ciobanu, P. Chapon, and D. Predoi (2020). Coatings 10, 11. https://doi.org/10.3390/coatings10111124.

    Article  CAS  Google Scholar 

  29. S. Shi, J. Jia, X. Guo, Y. Zhao, D. Chen, Y. Guo, and X. Zhang (2016). Int. J. Nanomed. 11, 6499. https://doi.org/10.2147/ijn.s41371.

    Article  CAS  Google Scholar 

  30. S. Fulaz, H. Devlin, S. Vitale, L. Quinn, J. P. O’Gara, and E. Casey (2020). Int. J. Nanomed. 15, 4799. https://doi.org/10.2147/ijn.s256227.

    Article  CAS  Google Scholar 

  31. T. Rasamiravaka, Q. Labtani, P. Duez, and M. El Jaziri (2015). Biomed. Res. Int. 2015, 1–17. https://doi.org/10.1155/2015/759348.

    Article  CAS  Google Scholar 

  32. L. Shkodenko, I. Kassirov, and E. Koshel (2020). Microorganisms 8, 10. https://doi.org/10.3390/microorganisms8101545.

    Article  CAS  Google Scholar 

  33. S. Armstrong, S. P. Yates, and A. R. Merrill (2002). J. Biol. Chem. 277, 48. https://doi.org/10.1074/jbc.m206916200.

    Article  Google Scholar 

  34. J. Coburn, S. T. Dillon, B. H. Iglewski, and D. M. Gill (1989). Infect Immun. 57, 3. https://doi.org/10.1128/iai.57.3.996-998.1989.

    Article  Google Scholar 

  35. K. Rice, M. Huesca, D. Vaz, and M. J. McGavin (2001). Infect Immun. 69, 6. https://doi.org/10.1128/iai.69.6.3791-3799.2001.

    Article  Google Scholar 

  36. A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, and D. Mohamad (2015). Nano-Micro Lett. 7, 3. https://doi.org/10.1007/s40820-015-0040-x.

    Article  CAS  Google Scholar 

  37. D. Nehme and K. Poole (2007). J. Bacteriol. 189, 17. https://doi.org/10.1128/jb.00718-07.

    Article  Google Scholar 

  38. D. Gupta, A. Singh, and A. U. Khan (2017). Nanoscale Res Lett. 12, 1. https://doi.org/10.1186/s11671-017-2222-6.

    Article  CAS  Google Scholar 

  39. N. Pourmehdi, Z. Moradi-Shoeili, A. Sadat Naeemi, and A. Salehzadeh (2020). Chem. Biodivers. 17, 6. https://doi.org/10.1002/cbdv.202000072.

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirsasan Mirpour.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahmatkesh, H., Mirpour, M., Zamani, H. et al. Effect of Samarium Oxide Nanoparticles Fabricated by Curcumin on Efflux Pump and Virulence Genes Expression in MDR Pseudomonas aeruginosa and Staphylococcus aureus. J Clust Sci 34, 1227–1235 (2023). https://doi.org/10.1007/s10876-022-02274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02274-x

Keywords

Navigation