Skip to main content

Advertisement

Log in

Bacterial periphytic communities related to mercury methylation within aquatic plant roots from a temperate freshwater lake (South-Western France)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Macrophyte floating roots are considered as hotspots for methylmercury (MeHg) production in aquatic ecosystems through microbial activity. Nevertheless, very little is known about periphyton bacterial communities and mercury (Hg) methylators in such ecological niches. The ability to methylate inorganic Hg is broadly distributed among prokaryotes; however, sulfate-reducers have been reported to be the most important MeHg producers in macrophyte floating roots. In the present work, the periphyton bacterial communities colonizing Ludwigia sp. floating roots were investigated through molecular methods. Among the 244 clones investigated, anaerobic microorganisms associated with the sulfur biogeochemical cycle were identified. Notably, members of the sulfur-oxidizing prokaryotes and the anoxygenic, purple non-sulfur bacteria (Rhodobacteraceae, Comamonadaceae, Rhodocyclaceae, Hyphomicrobiaceae) and the sulfate reducers (Desulfobacteraceae, Syntrophobacteraceae, and Desulfobulbaceae) were detected. In addition, 15 sulfate-reducing strains related to the Desulfovibrionaceae family were isolated and their Hg-methylation capacity was tested using a biosensor. The overall results confirmed that Hg methylation is a strain-specific process since the four strains identified as new Hg-methylators were closely related to non-methylating isolates. This study highlights the potential involvement of periphytic bacteria in Hg methylation when favorable environmental conditions are present in such ecological micro-niches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achá D, Hintelmann H, Yee J (2011) Importance of sulfate reducing bacteria in mercury methylation and demethylation in periphyton from Bolivian Amazon region. Chemosphere 82:911–916

    Article  Google Scholar 

  • Achá D, Iñiguez V, Roulet M, Guimarães JRD, Luna R, Alanoca L, Sanchez S (2005) Sulfate-reducing bacteria in floating macrophyte rhizospheres from an Amazonian floodplain lake in Bolivia and their association with hg methylation. Appl Environ Microbiol 71:7531–7535

    Article  Google Scholar 

  • Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Lipman D (1998) Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  Google Scholar 

  • Bahr M, Crump BC, Klepac-Ceraj V, Teske A, Sogin ML, Hobbie JE (2005) Molecular characterization of sulfate-reducing bacteria in a New England salt marsh. Environ Microbiol 7:1175–1185

    Article  CAS  Google Scholar 

  • Beier S, Kim OS, Junier P, Bertilsson S, Witzel KP (2010) Betaproteobacterial ammonia oxidizers in root zones of aquatic macrophytes. Fundam Appl Limnol 177(4):241–255

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  Google Scholar 

  • Bravo AG, Loizeau JL, Dranguet P, Makri S, Björn E, Ungureanu VG, Cosio C (2016) Persistent hg contamination and occurrence of hg-methylating transcript (hgcA) downstream of a chlor-alkali plant in the Olt River (Romania). Environ Sci Pollut Res 23(11):10529–10541

    Article  CAS  Google Scholar 

  • Bridou R, Monperrus M, Gonzalez PR, Guyoneaud R, Amouroux D (2011) Simultaneous determination of mercury methylation and demethylation capacities of various sulfate-reducing bacteria using species-specific isotopic tracers. Environ Toxicol Chem 30(2):337–344

    Article  CAS  Google Scholar 

  • Calhoun A, King GM (1997) Regulation of root-associated methanotrophy by oxygen availability in the rhizosphere of two aquatic macrophytes. Appl Environ Microbiol 63(8):3051–3058

    CAS  Google Scholar 

  • Chasar LC, Scudder BC, Stewart AR, Bell AH, Aiken GR (2009) Mercury cycling in stream ecosystems. 3. Trophic dynamics and Methylmercury bioaccumulation. Environ Sci Technol 43(8):2733–2739

    Article  CAS  Google Scholar 

  • Christensen PB, Revsbech NP, Sand-Jensen K (1994) Microsensor analysis of oxygen in the rhizosphere of the aquatic macrophyte Littorella uniflora. Plant Physiol 105:847–852

    Article  CAS  Google Scholar 

  • Colin Y, Goñi-Urriza M, Caumette P, Guyoneaud R (2012) Combination of high throughput cultivation and dsrA sequencing for assessment of sulfate-reducing bacteria diversity in sediments. FEMS Microbiol Ecol 83(1):26–37

    Article  Google Scholar 

  • Compeau GC, Bartha R (1985) Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Appl Environ Microbiol 50:498–502

    CAS  Google Scholar 

  • Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1(5):285–292

    Article  CAS  Google Scholar 

  • Correia RRS, Miranda MR, Guimaraes JRD (2011) Mercury methylation and the microbial consortium in periphyton of tropical macrophytes: effect of different inhibitors. Environ Res 112:86–91

    Article  Google Scholar 

  • Deng GF, Zhang TW, Yang LM, Wang QQ (2013) Studies of biouptake and transformation of mercury by a typical unicellular diatom Phaeodactylum tricornutum. Chin Sci Bull 58:256–265

    Article  CAS  Google Scholar 

  • Detmers J, Strauss H, Schulte U, Bergmann A, Knittel K, Kuever J (2004) FISH shows that Desulfotomaculum spp. are the dominating sulfate-reducing bacteria in a pristine aquifer. Microb Ecol 47:236–242

    Article  CAS  Google Scholar 

  • Elifantz H, Tel-Or E (2002) Heavy metal biosorption by plant biomass of the macrophyte. Water Air Soil Pollut 141:207–218

    Article  CAS  Google Scholar 

  • Flemming EJ, Mack EE, Green PG, Nelson DC (2006) Mercury methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol 72(1):457–464

    Article  Google Scholar 

  • Gentès S, Monperrus M, Legeay A, Maury-Brachet R, Davail S, André JM, Guyoneaud R (2013a) Incidence of invasive macrophytes on methylmercury budget in temperate lakes: central role of bacterial periphytic communities. Environ Pollut 172:116–123

    Article  Google Scholar 

  • Gentès S, Maury-Brachet R, Guyoneaud R, Monperrus M, André JM, Davail S, Legeay A (2013b) Mercury bioaccumulation along food webs in aquatic ecosystems colonized by aquatic macrophytes in South Western France. Ecotoxicol Environ Saf 91:180–187

    Article  Google Scholar 

  • Gerard G, Chanton J (1993) Quantification of methane oxidation in the rhizosphere of emergent aquatic macrophytes: defining upper limits. Biogeochemistry 23:79–97

    Article  CAS  Google Scholar 

  • Gilmour CC, Podar M, Bullock AL, Graham AM, Brown SD, Somenahally AC, Elias D (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol 47(20):11810–11820

    Article  CAS  Google Scholar 

  • Gilmour CC, Elias D, Kucken AM, Brown SD, Palumbo AV, Schadt CW, Wall JD (2011) Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 77(12):3938–3951

    Article  CAS  Google Scholar 

  • Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol 26:2281–2287

    Article  CAS  Google Scholar 

  • Goñi-Urriza M, Corsellis Y, Lanceleur L, Tessier E, Gury J, Monperrus M, Guyoneaud R (2015) Relationships between bacterial energetic metabolism, mercury methylation potential, and hgcA/hgcB gene expression in Desulfovibrio dechloroacetivorans BerOc1. Environ Sci Pollut Res Int 22(18):13764–13771

    Article  Google Scholar 

  • Grégoire DS, Poulain AJ (2014) A little bit of light goes a long way: the role of phototrophs on mercury cycling. Metallomics 6:396–407

    Article  Google Scholar 

  • Grégoire DS, Poulain AJ (2016) A physiological role for HgII during phototrophic growth. Nat Geosci 9(2):121–125

    Article  Google Scholar 

  • Hamelin S, Planas D, Amyot M (2015) Mercury methylation and demethylation by periphyton biofilms and their host in a fluvial wetland of the St. Lawrence River (QC, Canada). Sci Total Environ 512-513:464–471

    Article  CAS  Google Scholar 

  • Hamelin S, Amyot M, Barkay T, Wang Y, Planas D (2011) Methanogens: principal methylators of mercury in lake periphyton. Environ Sci Technol 45:7693–7700

    Article  CAS  Google Scholar 

  • Ivask A, Hakkila K, Virta M (2001) Detection of organomercurials with sensor bacteria. Anal Chem 73(21):5168–5171

    Article  CAS  Google Scholar 

  • Joulian C, Ramsing NB, Ingvorsen K (2001) Congruent phylogenies of most common small subunit rRNA and dissimilatory sulfite reductase gene sequences retrieved from estuarine sediments. Appl Environ Microbiol 67(7):3314–3318

    Article  CAS  Google Scholar 

  • Kerin EJ, Gilmour CC, Roden E, Suzuki MT, Coates JD, Mason RP (2006) Mercury methylation by dissimilatory iron-reducing bacteria. Appl Environ Microbiol 72:7919–7921

    Article  CAS  Google Scholar 

  • King JK, Kostka JE, Frischer ME, Saunders FM, Jahnke RA (2001) A quantitative relationship that demonstrates mercury methylation rates in marine sediments are based on the community composition and activity of sulfate-reducing bacteria. Environ Sci Technol 35:2491–2496

    Article  CAS  Google Scholar 

  • Laanbroek HJ, Geerligs HJ, Sijtsma L, Veldkamp H (1984) Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus, and Desulfovibrio species isolated from intertidal sediments. Appl Environ Microbiol 47:329–334

    CAS  Google Scholar 

  • Laanbroek HJ, Pfennig N (1981) Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments. Arch Microbiol 128:330–335

    Article  CAS  Google Scholar 

  • Leclerc M, Planas D, Amyot M (2015) Relationship between extracellular low-molecular-weight Thiols and mercury species in natural Lake Periphytic biofilms. Environ Sci Technol 49(13):7709–7716

    Article  CAS  Google Scholar 

  • Lefebvre DD, Kelly D, Budd K (2007) Biotransformation of hg(II) by cyanobacteria. Appl Environ Microbiol 73(1):243–249

    Article  CAS  Google Scholar 

  • Leloup J, Petit F, Boust D, Deloffre J, Bally G, Clarisse O, Quillet L (2005) Dynamics of sulfate-reducing microorganisms (dsrAB genes) in two contrasting mudflats of the seine estuary (France). Microb Ecol 50:307–314

    Article  CAS  Google Scholar 

  • Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    CAS  Google Scholar 

  • Mason RP, Reinfelder JR, Morel FMM (1996) Uptake, toxicity, and trophic transfer of mercury in a coastal diatom. Environ Sci Technol 30:1835–1845

    Article  CAS  Google Scholar 

  • Matsuzawa H, Tanaka Y, Tamaki H, Kamagata Y, Mori K (2010) Culture-dependent and independent analyses of the microbial communities inhabiting the Giant duckweed (Spirodela polyrrhiza) rhizoplane and isolation of a variety of rarely cultivated organisms within the phylum Verrucomicrobia. Microbes Environ 25(4):302–308

    Article  Google Scholar 

  • Mauro JBN, Guimarães JRD, Hintelmann H, Watras CJ, Haack EA, Coelho-Souza SA (2002) Mercury methylation in macrophytes, periphyton, and water - comparative studies with stable and radio-mercury additions. Anal Bioanal Chem 374:983–989

    Article  CAS  Google Scholar 

  • Miles CJ, Moye HA, Phlips EJ, Sargent B (2001) Partitioning of monomethylmercury between freshwater algae and water. Environ Sci Technol 35:4277–4282

    Article  CAS  Google Scholar 

  • Molina CI, Gibon FM, Duprey JL, Dominguez E, Guimarães JRD, Roulet M (2010) Transfer of mercury and methylmercury along macroinvertebrate food chains in a floodplain lake of the Beni River, Bolivian Amazonia. Sci Total Environ 408(16):3382–3391

    Article  CAS  Google Scholar 

  • Mussmann M, Ishii K, Rabus R, Amann R (2005) Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Environ Microbiol 7:405–418

    Article  Google Scholar 

  • Pak KR, Bartha R (1998) Mercury methylation and demethylation in anoxic lake sediments and by strictly anaerobic bacteria. Appl Environ Microbiol 64(3):1013–1017

    CAS  Google Scholar 

  • Parks JM, Johs A, Podar M, Bridou R, Hurt RA Jr, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang L (2013) The genetic basis for bacterial mercury methylation. Science 339(6125):1332–1335

    Article  CAS  Google Scholar 

  • Pfennig N, Truper HG (1992) The family Chromatiaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer-Verlag, New-York, pp 3200–3221

    Chapter  Google Scholar 

  • Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, Palumbo AV, Somenahally AC, Elias DA (2015) Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv 1(9):1–13

    Article  Google Scholar 

  • Pongratz R, Heumann KG (1998) Production of methylated mercury and lead by polar macroalgae – a significant natural source for atmospheric heavy metals in clean room compartments. Chemosphere 36:1935–1946

    Article  CAS  Google Scholar 

  • Purdy KJ, Embley TM, Nedwell DB (2002) The distribution and activity of sulfate reducing bacteria in estuarine and coastal marine sediments. Antonie Van Leeuwenhoek 81:181–187

    Article  CAS  Google Scholar 

  • Purdy KJ, Nedwell DB, Embley TM, Takii S (1997) Use of 16S rRNA-targeted oligonucleotide probes to investigate the occurrence and selection of sulfate-reducing bacteria in response to nutrient addition to sediment slurry microcosms from a Japanese estuary. FEMS Microbiol Ecol 24:221–234

    Article  CAS  Google Scholar 

  • Ranchou-Peyruse M, Monperrus M, Bridou R, Duran R, Amouroux D, Salvado JC, Guyoneaud R (2009) Overview of mercury methylation capacities among anaerobic bacteria including representatives of the sulfate-reducers: implications for environmental studies. Geomicrobiol J 26:1–8

    Article  CAS  Google Scholar 

  • Rantala A, Utriainen M, Kaushik N, Virta M, Välimaa AL, Karp M (2011) Luminescent bacteria-based sensing method for methylmercury specific determination. Anal Bioanal Chem 400(4):1041–1049

    Article  CAS  Google Scholar 

  • Rejmankova E (2011) The role of macrophytes in wetland ecosystems. J Ecol Field Biol 34(4):333–344

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • Stout LM, Nüsslein K (2010) Biotechnological potential of aquatic plant–microbe interactions. Curr Opin Biotechnol 21(3):235–372

    Article  Google Scholar 

  • Stout LM, Nüsslein K (2005) Shifts in rhizoplane communities of aquatic plants after cadmium exposure. Appl Environ Microbiol 71(5):2484–2492

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  • Van Gemerden H (1993) Microbial mats: a joint-venture. Mar Geol 113:3–25

    Article  Google Scholar 

  • Vladár P, Rusznyák A, Márialigeti K, Borsodi AK (2008) Diversity of sulfate-reducing bacteria inhabiting the rhizosphere of Phragmites australis in Lake Velencei (Hungary) revealed by a combined cultivation-based and molecular approach. Microb Ecol 56(1):64–75

    Article  Google Scholar 

  • Wei B, Yu X, Zhang S, Gu L (2011) Comparaison of the community structures of ammonia-oxidizing bacteria and archaea in rhizoplanes of floating aquatic macrophytes. Microbiol Res 166:468–474

    Article  CAS  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate- reducing bacteria. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Springer-Verlag, New York, pp 3352–3378

    Chapter  Google Scholar 

  • Yu R-Q, Adatto I, Montesdeoca MR, Driscoll CT, Hines ME, Barkay T (2010) Mercury methylation in sphagnum moss mats and its association with sulfate-reducing bacteria in an acidic Adirondack forest lake wetland. FEMS Microbiol Ecol 74(3):655–668

    Article  CAS  Google Scholar 

  • Yu R-Q, Flanders JR, Mack EE, Turner R, Mirza MB, Barkay T (2012) Contribution of coexisting sulfate and iron reducing bacteria to methylmercury production in freshwater river sediments. Environ Sci Technol 46(5):2684–2691

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Sophie Gentès received a doctoral grant from the Conseil Général des Landes. The DIRECT project (Les microorganismes sulfato-réducteurs colonisant les racines de macrophytes aquatiques: DIversité et Risques liés à la méthylation du mErcure et son transfert vers la Chaîne Trophique) received financial support from the INSU (Institut National des Sciences de l’Univers) through EC2CO (Ecosphère Continentale et Côtière). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Gentès.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOC 60 kb)

ESM 2

(TXT 92 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gentès, S., Taupiac, J., Colin, Y. et al. Bacterial periphytic communities related to mercury methylation within aquatic plant roots from a temperate freshwater lake (South-Western France). Environ Sci Pollut Res 24, 19223–19233 (2017). https://doi.org/10.1007/s11356-017-9597-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9597-x

Keywords

Navigation