Skip to main content
Log in

Controllable synthesis Fe3O4@POHABA core-shell nanostructure as high-performance recyclable bifunctional magnetic antimicrobial agent

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We demonstrated a method to form magnetic antimicrobial POHABA (poly-N,N′-[(4,5-dihydroxy-1,2-phenylene)bis(methylene)]bisacrylamide)-based core-shell nanostructure by free-radical polymerization of OHABA on the Fe3O4 core surface. The magnetic antimicrobial agent Fe3O4@POHABA can be used in domestic water treatment against bacterial pathogens. The thickness of POHABA shell could be controlled from 10.4 ± 1.2 to 56.3 ± 11.7 nm by the dosage of OHABA. The results of antimicrobial-activity test indicated that POHABA-based core-shell nanostructure had broad-spectrum inhibitory against Gram-negative, Gram-positive bacteria and fungi. The minimum inhibitory concentration (MIC) values of Fe3O4@POHABA nanostructure against Escherichia coli and Bacillus subtilis were both 0.4 mg/mL. Fe3O4@POHABA nanostructures responded to a permanent magnet and were easily recycled. Fe3O4@POHABA nanoparticles retained 100% antimicrobial efficiency for both Gram-negative and Gram-positive bacteria throughout eight recycle procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amarjargal A, Tijing LD, Im IT, Kim CS (2013) Simultaneous preparation of Ag/Fe3O4 core-shell nanocomposites with enhanced magnetic moment and strong antibacterial and catalytic properties. Chem Eng J 226:243–254

    Article  CAS  Google Scholar 

  • Barreda AI, Gutierrez Y, Sanz JM, Gonzalez F, Moreno F (2016) Polarimetric response of magnetodielectric core-shell nanoparticles: an analysis of scattering directionality and sensing. Nanotechnology 27

  • Bordbar AK, Rastegari AA, Amiri R, Ranjbakhsh E, Abbasi M, Khosropour AR (2014) Characterization of modified magnetite nanoparticles for albumin immobilization. Biotechnol Res Int 2014:705068–705068

    Article  CAS  Google Scholar 

  • Buszewski B, Klodzinska E (2016) Rapid microbiological diagnostics in medicine using electromigration techniques. Trac-Trends In Analytical Chemistry 78:95–108

    Article  CAS  Google Scholar 

  • Chen J, Zhang WJ, Zhang M, Guo Z, Wang HB, He MN, Xu PP, Zhou JJ, Liu ZB, Chen QW (2015) Mn (II) mediated degradation of artemisinin based on Fe3O4@MnSiO3-FA nanospheres for cancer therapy in vivo. Nano 7:12542–12551

    CAS  Google Scholar 

  • Chudasama B, Vala AK, Andhariya N, Upadhyay RV, Mehta RV (2009) Enhanced antibacterial activity of bifunctional Fe3O4-Ag core-shell nanostructures. Nano Res 2:955–965

    Article  CAS  Google Scholar 

  • Das B, Mandal M, Upadhyay A, Chattopadhyay P, Karak N (2013) Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed Mater 8:035003

    Article  Google Scholar 

  • Dickson JS, Koohmaraie M (1989) Cell-surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl Environ Microb 55:832–836

    CAS  Google Scholar 

  • Dong A, Lan S, Huang JF, Wang T, Zhao TY, Xiao LH, Wang WW, Zheng X, Liu FQ, Gao G, Chen YX (2011a) Modifying Fe3O4-functionalized nanoparticles with N-halamine and their magnetic/antibacterial properties. ACS Appl Mater Interfaces 3:4228–4235

    Article  CAS  Google Scholar 

  • Dong A, Sun Y, Lan S, Wang Q, Cai Q, Qi X, Zhang Y, Gao G, Liu F, Harnoode C (2013) Barbituric acid-based magnetic N-halamine nanoparticles as recyclable antibacterial agents. ACS Appl Mater Interfaces 5:8125–8133

    Article  CAS  Google Scholar 

  • Dong H, Huang J, Koepsel RR, Ye P, Russell AJ, Matyjaszewski K (2011b) Recyclable antibacterial magnetic nanoparticles grafted with quaternized poly(2-(dimethylamino)ethyl methacrylate) brushes. Biomacromolecules 12:1305–1311

    Article  CAS  Google Scholar 

  • Dzudzevic Cancar H, Soylemez S, Akpinar Y, Kesik M, Goker S, Gunbas G, Volkan M, Toppare L (2016) A novel acetylcholinesterase biosensor: core-shell magnetic nanoparticles incorporating a conjugated polymer for the detection of organophosphorus pesticides. ACS Appl Mater Interfaces 8:8058–8067

    Article  CAS  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:285604

    Article  Google Scholar 

  • He L, Malik V, Wang M, Hu Y, Anson FE, Yin Y (2012) Self-assembly and magnetically induced phase transition of three-dimensional colloidal photonic crystals. Nano 4:4438–4442

    CAS  Google Scholar 

  • Jang J, Kim Y (2008) Fabrication of monodisperse silica–polymer core–shell nanoparticles with excellent antimicrobial efficacy. Chem Commun:4016–4018

  • Li CY, Younesi R, Cai YL, Zhu YH, Ma MG, Zhu JF (2014a) Photocatalytic and antibacterial properties of Au-decorated Fe3O4@mTiO2 core-shell microspheres. Appl. Catal. B-Environ. 156:314–322

    Article  Google Scholar 

  • Li JC, Hu Y, Yang J, Wei P, Sun WJ, Shen MW, Zhang GX, Shi XY (2015) Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. Biomaterials 38:10–21

    Article  CAS  Google Scholar 

  • Li Q-L, Sun Y, Sun Y-L, Wen J, Zhou Y, Bing Q-M, Isaacs LD, Jin Y, Gao H, Yang Y-W (2014b) Mesoporous silica nanoparticles coated by layer-by-layer self-assembly using cucurbit[7]uril for in vitro and in vivo anticancer drug release. Chem Mater 26:6418–6431

    Article  CAS  Google Scholar 

  • Lin L, Cui H, Zeng G, Chen M, Zhang H, Xu M, Shen X, Bortolini C, Dong M (2013) Ag-CuFe2O4 magnetic hollow fibers for recyclable antibacterial materials. J Mater Chem B 1:2719–2723

    Article  CAS  Google Scholar 

  • Liu B, Li CX, Ma PA, Chen YY, Zhang YX, Hou ZY, Huang SS, Lin J (2015) Multifunctional NaYF4:Yb, Er@mSiO2@Fe3O4-PEG nanoparticles for UCL/MR bioimaging and magnetically targeted drug delivery. Nano 7:1839–1848

    CAS  Google Scholar 

  • Ma FX, Hu H, Wu HB, Xu CY, Xu ZC, Zhen L, Lou XW (2015) Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv Mater 27:4097–4101

    Article  CAS  Google Scholar 

  • Ma S, Yong D, Zhang Y, Wang X, Han X (2014) A universal approach for the reversible phase transfer of hydrophilic nanoparticles. Chem Eur J 20:15580–15586

    Article  CAS  Google Scholar 

  • Maleki H, Rai A, Pinto S, Evangelista M, Cardoso RMS, Paulo C, Carvalheiro T, Paiva A, Imani M, Simchi A, Duraes L, Portugal A, Ferreira L (2016) High antimicrobial activity and low human cell cytotoxicity of core-shell magnetic nanoparticles functionalized with an antimicrobial peptide. ACS Appl Mater Interfaces 8:11366–11378

    Article  CAS  Google Scholar 

  • Mosaiab T, Jeong CJ, Shin GJ, Choi KH, Lee SK, Lee I, In I, Park SY (2013b) Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Mater Sci Eng C Mater Biol Appl 33:3786–3794

    Article  CAS  Google Scholar 

  • Nardi T, Rtimi S, Pulgarin C, Leterrier Y (2015) Antibacterial surfaces based on functionally graded photocatalytic Fe3O4@TiO2 core-shell nanoparticle/epoxy composites. RSC Adv 5:105416–105421

    Article  CAS  Google Scholar 

  • Osborn M (1969) Structure and biosynthesis of the bacterial cell wall. Annu Rev Biochem 38:501–538

    Article  CAS  Google Scholar 

  • Perez RA, Kim H-W (2015) Core–shell designed scaffolds for drug delivery and tissue engineering. Acta Biomater 21:2–19

    Article  CAS  Google Scholar 

  • Qiu XL, Li QL, Zhou Y, Jin XY, Qi AD, Yang YW (2015) Sugar and pH dual-responsive snap-top nanocarriers based on mesoporous silica-coated Fe3O4 magnetic nanoparticles for cargo delivery. Chem Commun 51:4237–4240

    Article  CAS  Google Scholar 

  • Qureshi A, Pandey A, Chouhan RS, Gurbuz Y, Niazi JH (2015) Whole-cell based label-free capacitive biosensor for rapid nanosize-dependent toxicity detection. Biosens Bioelectron 67:100–106

    Article  CAS  Google Scholar 

  • Roy K, Kanwar RK, Kanwar JR (2015) LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging. Biomaterials 71:84–99

    Article  CAS  Google Scholar 

  • Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D (2013) Catechol-based biomimetic functional materials. Adv Mater 25:653–701

    Article  Google Scholar 

  • Situ SF, Samia ACS (2014) Highly efficient antibacterial iron oxide@carbon nanochains from wüstite precursor nanoparticles. ACS Appl Mater Interfaces 6:20154–20163

    Article  CAS  Google Scholar 

  • Tian T, Shi X, Cheng L, Luo Y, Dong Z, Gong H, Xu L, Zhong Z, Peng R, Liu Z (2014) Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent. ACS Appl Mater Interfaces 6:8542–8548

    Article  CAS  Google Scholar 

  • Tiwari DK, Phanindrudu M, Aravilli VK, Sridhar B, Likhar PR, Tiwari DK (2016) Magnetically recoverable Cu-0/Fe3O4 catalyzed highly regioselective synthesis of 2,3,4-trisubstituted pyrroles from unactivated terminal alkynes and isocyanides. Chem Commun 52:4675–4678

    Article  CAS  Google Scholar 

  • Tsuchiya T, Terabe K, Chi M, Higuchi T, Osada M, Yamashita Y, Ueda S, Aono M (2016) In situ tuning of magnetization and magnetoresistance in Fe3O4 thin film achieved with all-solid-state redox device. ACS Nano 10:1655–1661

    Article  CAS  Google Scholar 

  • Waldron RD (1955) Infrared spectra of ferrites. Phys Rev 99:1727–1735

    Article  CAS  Google Scholar 

  • Wang BL, Jin TW, Han YM, Shen CH, Li Q, Lin QK, Chen H (2015) Bio-inspired terpolymers containing dopamine, cations and MPC: a versatile platform to construct a recycle antibacterial and antifouling surface. Journal of Materials Science B 3:5501–5510

    CAS  Google Scholar 

  • Wang C, Wang L, Jin J, Liu J, Li Y, Wu M, Chen L, Wang B, Yang X, Su B-L (2016) Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core-shell nanospheres. Appl Catal B-Environ 188:351–359

    Article  CAS  Google Scholar 

  • Wang Y, Gu H (2015) Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Adv Mater 27:576–585

    Article  CAS  Google Scholar 

  • Wiegand I, Hilpert K, Hancock RE (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175

    Article  CAS  Google Scholar 

  • Yang GB, Gong H, Liu T, Sun XQ, Cheng L, Liu Z (2015) Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 60:62–71

    Article  CAS  Google Scholar 

  • Zhang H, Lou SF, Nie HL, Quan J, Zhu LM (2013) Preparation of core-shell structured PVP-NSPs/PLLA binary-drug loaded complex fibermats by electrospinning; in vitro release and antimicrobial properties. J Control Release 172:E37–E37

    Article  CAS  Google Scholar 

  • Zhang L, Luo Q, Zhang F, Zhang D-M, Wang Y-S, Sun Y-L, Dong W-F, Liu J-Q, Huo Q-S, Sun H-B (2012) High-performance magnetic antimicrobial Janus nanorods decorated with Ag nanoparticles. J Mater Chem 22:23741–23744

    Article  CAS  Google Scholar 

  • Zhang WQ, Li XN, Liang JW, Tang KB, Zhu YC, Qian YT (2016) One-step thermolysis synthesis of two-dimensional ultrafine Fe3O4 particles/carbon nanonetworks for high-performance lithium-ion batteries. Nano 8:4733–4741

    CAS  Google Scholar 

  • Zhang Z, Xing D, Liang Q, Yong D, Han X (2014) Size controllable synthesis and antimicrobial activity of poly-N,N-[(4,5-dihydroxy-1,2-phenylene)bis(methylene)]bisacrylamide microspheres. RSC Adv 4:57891–57898

    Article  CAS  Google Scholar 

  • Zhao HY, Liu L, He J, Pan CC, Li H, Zhou ZY, Ding Y, Huo D, Hu Y (2015) Synthesis and application of strawberry-like Fe3O4-Au nanoparticles as CT-MR dual-modality contrast agents in accurate detection of the progressive liver disease. Biomaterials 51:194–207

    Article  CAS  Google Scholar 

  • Zhou L, Gao C, Xu W (2010) Magnetic dendritic materials for highly efficient adsorption of dyes and drugs. ACS Appl Mater Interfaces 2:1483–1491

    Article  CAS  Google Scholar 

  • Zhou W, Yu K, Wang D, Chu J, Li J, Zhao L, Ding C, Du Y, Jia X, Wang H, Wen G (2016) Hierarchically constructed NiCo2S4@Ni(1-x)Co x(OH)2 core/shell nanoarrays and their application in energy storage. Nanotechnology:27

  • Zhou Y, Jiang X, Tang J, Su Y, Peng F, Lu Y, Peng R, He Y (2014) A silicon-based antibacterial material featuring robust and high antibacterial activity. J Mater Chem B 2:691–697

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 21528501), the HIT Environment and Ecology Innovation Special Funds (HSCJ201617), and the National Key Research and Development Programme (2016YFC0401104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Han.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Xing, D., Zhao, X. et al. Controllable synthesis Fe3O4@POHABA core-shell nanostructure as high-performance recyclable bifunctional magnetic antimicrobial agent. Environ Sci Pollut Res 24, 19011–19020 (2017). https://doi.org/10.1007/s11356-017-9535-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9535-y

Keywords

Navigation