Skip to main content
Log in

Immobilized β-lactamase on Fe3O4 magnetic nanoparticles for degradation of β-lactam antibiotics in wastewater

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The emergence of antibiotics residues in pharmaceutical industrial wastewater has been a significant environment problem. However, current methods of treating antibiotic-polluted wastewater are inefficient, of high cost and time-consuming. In this study, highly effective enzymatic Fe3O4 magnetic nanoparticles were developed, which is extremely simple and can degrade antibiotics in a fast manner at a low cost. β-Lactamase, a representative enzyme for β-lactam antibiotic degradation, was covalently immobilized on the surface of magnetic nanoparticles modified with amino groups by a simple cross-linking process. The immobilized β-lactamase displayed a wider pH and temperature range for penicillin G degradation than the free enzyme. Meanwhile, the thermostability and storage stability of the immobilized β-lactamase were improved. Fifty milligrams magnetic nanoparticles immobilized with β-lactamase can thoroughly degrade 100 mL penicillin G (5–50 mg L−1) within 5 min. Even if the β-lactamase immobilized on the nanoparticles was reused 35 times in the 5 mg L−1 penicillin G solution, it still kept more than 95% degradation efficiency. These suggest that magnetic nanoparticles immobilized with β-lactamase have a sufficient capacity for degrading antibiotics in wastewater and will serve as a practical and economical solution to antibiotic pollution in pharmaceutical industrial wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amirbandeh M, Taheri-Kafrani A (2016) Immobilization of glucoamylase on triazine-functionalized Fe3O4/graphene oxide nanocomposite: improved stability and reusability. Int J Biol Macromol 93:1183–1191. doi:10.1016/j.ijbiomac.2016.09.092

    Article  CAS  Google Scholar 

  • Arslan-Alaton I, Dogruel S (2004) Pre-treatment of penicillin formulation effluent by advanced oxidation processes. J Hazard Mater 112:105–113. doi:10.1016/j.jhazmat.2004.04.009

    Article  CAS  Google Scholar 

  • Ashfaq M et al (2017) Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. Ecotoxicol Environ Saf 136:31–39. doi:10.1016/j.ecoenv.2016.10.029

    Article  CAS  Google Scholar 

  • Bai ZY, Yang Q, Wang JL (2016) Fe3O4/multi-walled carbon nanotubes as an efficient catalyst for catalytic ozonation of p-hydroxybenzoic acid. Int J Environ Sci Technol (Tehran) 13:483–492. doi:10.1007/s13762-015-0881-3

    Article  CAS  Google Scholar 

  • Cao C, Wei LL, Su M, Wang G, Shen JQ (2016) “Spontaneous bubble-template” assisted metal–polymeric framework derived N/Co dual-doped hierarchically porous carbon/Fe3O4 nanohybrids: superior electrocatalyst for ORR in biofuel cells. J Mater Chem A 4:9303–9310. doi:10.1039/c6ta03125k

    Article  CAS  Google Scholar 

  • Cardoso O, Porcher JM, Sanchez W (2014) Factory-discharged pharmaceuticals could be a relevant source of aquatic environment contamination: review of evidence and need for knowledge. Chemosphere 115:20–30. doi:10.1016/j.chemosphere.2014.02.004

    Article  CAS  Google Scholar 

  • Chen TT, Yang WJ, Guo YL, Yuan RJ, Xu L, Yan YJ (2014) Enhancing catalytic performance of beta-glucosidase via immobilization on metal ions chelated magnetic nanoparticles. Enzyme Microb Technol 63:50–57. doi:10.1016/j.enzmictec.2014.05.008

    Article  CAS  Google Scholar 

  • Chiang CH, Ishida H, Koenig JL (1980) The structure of γ-aminopropyltriethoxysilane on glass surfaces. J Colloid Interface Sci 74:396–404. doi:10.1016/0021-9797(80)90209-X

    Article  CAS  Google Scholar 

  • Conte D et al (2017) Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. Ecotoxicol Environ Saf 136:62–69. doi:10.1016/j.ecoenv.2016.10.031

    Article  CAS  Google Scholar 

  • d’Orlye F, Varenne A, Georgelin T, Siaugue JM, Teste B, Descroix S, Gareil P (2009) Charge-based characterization of nanometric cationic bifunctional maghemite/silica core/shell particles by capillary zone electrophoresis. Electrophoresis 30:2572–2582. doi:10.1002/elps.200800835

    Article  CAS  Google Scholar 

  • Guo H, Tang Y, Yu Y, Xue L, Qian JQ (2016) Covalent immobilization of alpha-amylase on magnetic particles as catalyst for hydrolysis of high-amylose starch. Int J Biol Macromol 87:537–544. doi:10.1016/j.ijbiomac.2016.02.080

    Article  CAS  Google Scholar 

  • Hu B, Pan J, Yu HL, Liu JW, Xu JH (2009) Immobilization of Serratia marcescens lipase onto amino-functionalized magnetic nanoparticles for repeated use in enzymatic synthesis of Diltiazem intermediate. Process Biochem 44:1019–1024. doi:10.1016/j.procbio.2009.05.001

    Article  CAS  Google Scholar 

  • Kim KD, Kim SS, Choa YH, Kim HT (2007) Formation and surface modification of Fe3O4 nanoparticles by co-precipitation and sol–gel method. J Ind Eng Chem 13:1137–1141

    CAS  Google Scholar 

  • Lateef A (2004) The microbiology of a pharmaceutical effluent and its public health implications. World J Microbiol Biotechnol 20:167–171. doi:10.1023/B:WIBI.0000021752.29468.4e

    Article  CAS  Google Scholar 

  • Li D, Yang M, Hu JY, Zhang Y, Chang H, Jin F (2008) Determination of penicillin G and its degradation products in a penicillin production wastewater treatment plant and the receiving river. Water Res 42:307–317. doi:10.1016/j.watres.2007.07.016

    Article  CAS  Google Scholar 

  • Li YS, Church JS, Woodhead AL, Moussa F (2010) Preparation and characterization of silica coated iron oxide magnetic nano-particles. Spectrochim Acta Part A 76:484–489. doi:10.1016/j.saa.2010.04.004

    Article  CAS  Google Scholar 

  • Li XS, Zhu GT, Luo YB, Yuan BF, Feng YQ (2013) Synthesis and applications of functionalized magnetic materials in sample preparation. TrAC Trends Anal Chem 45:233–247. doi:10.1016/j.trac.2012.10.015

    Article  CAS  Google Scholar 

  • Ma M, Zhang Y, Yu W, Shen HY, Zhang HQ, Gu N (2003) Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf A 212:219–226. doi:10.1016/s0927-7757(02)00305-9

    Article  CAS  Google Scholar 

  • Ma ZY, Guan YP, Liu HZ (2005) Synthesis and characterization of micron-sized monodisperse superparamagnetic polymer particles with amino groups. J Polym Sci A Polym Chem 43:3433–3439. doi:10.1002/pola.20803

    Article  CAS  Google Scholar 

  • Michael I et al (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Res 47:957–995. doi:10.1016/j.watres.2012.11.027

    Article  CAS  Google Scholar 

  • Namvari M, Namazi H (2014) Clicking graphene oxide and Fe3O4 nanoparticles together: an efficient adsorbent to remove dyes from aqueous solutions. Int J Environ Sci Technol (Tehran) 11:1527–1536. doi:10.1007/s13762-014-0595-y

    Article  CAS  Google Scholar 

  • Ojer-Usoz E, Gonzalez D, Garcia-Jalon I, Vitas AI (2014) High dissemination of extended-spectrum beta-lactamase-producing Enterobacteriaceae in effluents from wastewater treatment plants. Water Res 56:37–47. doi:10.1016/j.watres.2014.02.041

    Article  CAS  Google Scholar 

  • Park H, Choung YK (2007) Degradation of antibiotics (tetracycline, sulfathiazole, ampicillin) using enzymes of glutathion S-transferase. Hum Ecol Risk Assess 13:1147–1155. doi:10.1080/10807030701506223

    Article  CAS  Google Scholar 

  • Pouretedal HR, Sadegh N (2014) Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood. J Water Process Eng 1:64–73. doi:10.1016/j.jwpe.2014.03.006

    Article  Google Scholar 

  • Qin X, Xiang XM, Sun XW, Ni H, Li L (2016) Preparation of nanoscale Bacillus thuringiensis chitinases using silica nanoparticles for nematicide delivery. Int J Biol Macromol 82:13–21. doi:10.1016/j.ijbiomac.2015.10.030

    Article  CAS  Google Scholar 

  • Rodrigues RC, Ortiz C, Berenguer-Murcia A, Torres R, Fernandez-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307. doi:10.1039/c2cs35231a

    Article  CAS  Google Scholar 

  • Shahriari T, Bidhendi GN, Mehrdadi N, Torabian A (2014) Effective parameters for the adsorption of chromium(III) onto iron oxide magnetic nanoparticle. Int J Environ Sci Technol (Tehran) 11:349–356. doi:10.1007/s13762-013-0315-z

    Article  CAS  Google Scholar 

  • Shahtalebi A, Sarrafzadeh MH, Rahmati MMM (2011) Application of nanofiltration membrane in the separation of amoxicillin from pharmaceutical waste water. Iran J Environ Health Sci Eng 8:109–116. doi:10.1016/j.seppur.2014.04.009

    Article  CAS  Google Scholar 

  • Sikora A et al (2015) A systematic comparison of different techniques to determine the zeta potential of silica nanoparticles in biological medium. Anal Methods 7:9835–9843. doi:10.1039/c5ay02014j

    Article  CAS  Google Scholar 

  • Su CM (2017) Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: a review of recent literature. J Hazard Mater 322:48–84. doi:10.1016/j.jhazmat.2016.06.060

    Article  CAS  Google Scholar 

  • Tahrani L et al (2015) Isolation and characterization of antibiotic-resistant bacteria from pharmaceutical industrial wastewaters. Microb Pathog 89:54–61. doi:10.1016/j.micpath.2015.09.001

    Article  CAS  Google Scholar 

  • Waley SG (1974) A spectrophotometric assay of beta-lactamase action on penicillins. Biochem J 139:789–790. doi:10.1042/bj1390789

    Article  CAS  Google Scholar 

  • Wang JH, Zheng SR, Shao Y, Liu JL, Xu ZY, Zhu DQ (2010) Amino-functionalized Fe3O4@SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. J Colloid Interface Sci 349:293–299. doi:10.1016/j.jcis.2010.05.010

    Article  CAS  Google Scholar 

  • Wang G, Chu J, Noorman H, Xia JY, Tang WJ, Zhuang YP, Zhang SL (2014) Prelude to rational scale-up of penicillin production: a scale-down study. Appl Microbiol Biotechnol 98:2359–2369. doi:10.1007/s00253-013-5497-2

    Article  CAS  Google Scholar 

  • Wang J, He BS, Hu XM (2015) Human-use antibacterial residues in the natural environment of China: implication for ecopharmacovigilance. Environ Monit Assess 187:14. doi:10.1007/s10661-015-4514-6

    Article  Google Scholar 

  • Wang GS, Ma YY, Tong Y, Dong XF (2016) Synthesis, characterization and magnetorheological study of 3-aminopropyltriethoxysilane-modified Fe3O4 nanoparticles. Smart Mater Struct 25:7. doi:10.1088/0964-1726/25/3/035028

    Article  CAS  Google Scholar 

  • Xi ZJ, Zheng B, Wang C (2016) Synthesis, surface modification, and biolabeling with aptamer of Fe3O4@SiO2 magnetic nanoparticles. Nanosci Nanotechnol Lett 8:1061–1066. doi:10.1166/nnl.2016.2246

    Article  Google Scholar 

  • Yao LL et al (2017) Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers: a case study at Jianghan Plain, central China. Ecotoxicol Environ Saf 135:236–242. doi:10.1016/j.ecoenv.2016.10.006

    Article  CAS  Google Scholar 

  • Zelenak V, Halamova D, Gaberova L, Bloch E, Llewellyn P (2008) Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: effect of amine basicity on sorption properties. Microporous Mesoporous Mater 116:358–364. doi:10.1016/j.micromeso.2008.04.023

    Article  CAS  Google Scholar 

  • Zou XX, Fang Z, Min R, Bai X, Zhang Y, Xu D, Fang PQ (2014) Is nationwide special campaign on antibiotic stewardship program effective on ameliorating irrational antibiotic use in China? Study on the antibiotic use of specialized hospitals in China in 2011–2012. J Huazhong Univ Sci Technol Med Sci 34:456–463. doi:10.1007/s11596-014-1300-6

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31371014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Q. Ge.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Editorial responsibility: M. Abbaspour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X.J., Fan, X.J., Chen, X.P. et al. Immobilized β-lactamase on Fe3O4 magnetic nanoparticles for degradation of β-lactam antibiotics in wastewater. Int. J. Environ. Sci. Technol. 15, 2203–2212 (2018). https://doi.org/10.1007/s13762-017-1596-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-017-1596-4

Keywords

Navigation