Skip to main content
Log in

A combined NMR- and HPLC-MS/MS-based metabolomics to evaluate the metabolic perturbations and subacute toxic effects of endosulfan on mice

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Endosulfan is the newly persistent organic pollutants (POPs) added to the Stockholm Convention as its widespread use, persistence, bioaccumulation, long-range transport, endocrine disruption, and toxicity related to various adverse effects. In the present study, male mice were administrated endosulfan at 0, 0.5, and 3.5 mg/kg by gavage for 2 weeks. 1H-NMR-based urinary metabolomics, HPLC-MS/MS-based targeted serum metabolomics, clinical analysis, and histopathology techniques were employed to evaluate the metabolic perturbations of subacute endosulfan exposure. Endosulfan exposures resulted in weight loss, liver inflammation and necrosis, and alterations in serum amino acids and urine metabolomics. Based on altered metabolites, several significantly perturbed pathways were identified including glycine, serine, and threonine metabolism; TCA cycle; pyruvate metabolism; glycolysis or gluconeogenesis; glycerophospholipid metabolism; and glyoxylate and dicarboxylate metabolism. Such pathways were highly related to amino acid metabolism, energy metabolism, and lipid metabolism. In addition, metabolomic results also demonstrated that gut microbiota was remarkably altered after endosulfan exposure. These observations may provide novel insight into revealing the potential toxic mechanism and evaluating the health risk of endosulfan exposure at metabolomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al Rajabi A et al (2014) Choline supplementation protects against liver damage by normalizing cholesterol metabolism in Pemt/Ldlr knockout mice fed a high-fat diet. J Nutr 144:252–257. doi:10.3945/jn.113.185389

    Article  Google Scholar 

  • Aliferis KA, Chrysayi-Tokousbalides M (2011) Metabolomics in pesticide research and development: review and future perspectives. Metabolomics 7:35–53. doi:10.1007/s11306-010-0231-x

    Article  CAS  Google Scholar 

  • Amelio I, Cutruzzola F, Antonov A, Agostini M, Melino G (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39:191–198. doi:10.1016/j.tibs.2014.02.004

    Article  CAS  Google Scholar 

  • An Y et al (2013) High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats. J Proteome Res 12:3755–3768. doi:10.1021/pr400398b

    Article  CAS  Google Scholar 

  • Becker L, Scheringer M, Schenker U, Hungerbuhler K (2011) Assessment of the environmental persistence and long-range transport of endosulfan. Environ Pollut 159:1737–1743. doi:10.1016/j.envpol.2011.02.012

    Article  CAS  Google Scholar 

  • Berntssen MH, Glover CN, Robb DH, Jakobsen JV, Petri D (2008) Accumulation and elimination kinetics of dietary endosulfan in Atlantic salmon (Salmo salar). Aquat Toxicol 86:104–111. doi:10.1016/j.aquatox.2007.10.006

    Article  CAS  Google Scholar 

  • Bollard ME et al (2010) NMR-based metabolic profiling identifies biomarkers of liver regeneration following partial hepatectomy in the rat. J Proteome Res 9:59–69. doi:10.1021/pr900200v

    Article  CAS  Google Scholar 

  • Brunelli E, Bernabo I, Berg C, Lundstedt-Enkel K, Bonacci A, Tripepi S (2009) Environmentally relevant concentrations of endosulfan impair development, metamorphosis and behaviour in Bufo bufo tadpoles. Aquat Toxicol 91:135–142. doi:10.1016/j.aquatox.2008.09.006

    Article  CAS  Google Scholar 

  • Bundy JG, Davey MP, Viant MR (2009) Environmental metabolomics: a critical review and future perspectives. Metabolomics 5:3–21. doi:10.1007/s11306-008-0152-0

    Article  CAS  Google Scholar 

  • Dong F, Zhang L, Hao F, Tang H, Wang Y (2013) Systemic responses of mice to dextran sulfate sodium-induced acute ulcerative colitis using 1H NMR spectroscopy. J Proteome Res 12:2958–2966. doi:10.1021/pr4002383

    Article  CAS  Google Scholar 

  • Dorval J, Leblond VS, Hontela A (2003) Oxidative stress and loss of cortisol secretion in adrenocortical cells of rainbow trout (Oncorhynchus mykiss) exposed in vitro to endosulfan, an organochlorine pesticide. Aquat Toxicol 63:229–241. doi:10.1016/s0166-445x(02)00182-0

    Article  CAS  Google Scholar 

  • Du H et al (2015a) Endosulfan isomers and sulfate metabolite induced reproductive toxicity in Caenorhabditis elegans involves genotoxic response genes. Environ Sci Technol 49:2460–2468. doi:10.1021/es504837z

    Article  CAS  Google Scholar 

  • Du H et al (2015b) Reproductive toxicity of endosulfan: implication from germ cell apoptosis modulated by mitochondrial dysfunction and genotoxic response genes in Caenorhabditis elegans. Toxicol Sci 145:118–127. doi:10.1093/toxsci/kfv035

    Article  CAS  Google Scholar 

  • Favre D et al (2010) Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV disease. Sci Transl Med 2:32ra36. doi:10.1126/scitranslmed.3000632

    Article  Google Scholar 

  • Gao Y et al (2014) Identifying early urinary metabolic changes with long-term environmental exposure to cadmium by mass-spectrometry-based metabolomics. Environ Sci Technol 48:6409–6418. doi:10.1021/es500750w

    Article  CAS  Google Scholar 

  • Guo FZ et al (2016) Endosulfan inhibiting the meiosis process via depressing expressions of regulatory factors and causing cell cycle arrest in spermatogenic cells. Environ Sci Pollut Res Int 23:20506–20516. doi:10.1007/s11356-016-7195-y

    Article  CAS  Google Scholar 

  • Hiruma K et al (2013) Glutathione and tryptophan metabolism are required for Arabidopsis immunity during the hypersensitive response to hemibiotrophs. Proc Natl Acad Sci U S A 110:9589–9594. doi:10.1073/pnas.1305745110

    Article  CAS  Google Scholar 

  • Jia H et al (2010) Monitoring and modeling endosulfan in Chinese surface soil. Environ Sci Technol 44:9279–9284. doi:10.1021/es102791n

    Article  CAS  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588. doi:10.1016/j.jnutbio.2005.12.001

    Article  CAS  Google Scholar 

  • Kalender S, Kalender Y, Ogutcu A, Uzunhisarcikli M, Durak D, Acikgoz F (2004) Endosulfan-induced cardiotoxicity and free radical metabolism in rats: the protective effect of vitamin E. Toxicology 202:227–235. doi:10.1016/j.tox.2004.05.010

    Article  CAS  Google Scholar 

  • Kaspar H (2009) Amino acid analysis in biological fluids by GC-MS. Dissertation, University of Regensburg

  • Kohlmeier M, da Costa KA, Fischer LM, Zeisel SH (2005) Genetic variation of folate-mediated one-carbon transfer pathway predicts susceptibility to choline deficiency in humans. Proc Natl Acad Sci U S A 102:16025–16030. doi:10.1073/pnas.0504285102

    Article  CAS  Google Scholar 

  • Landfried K et al (2011) Tryptophan catabolism is associated with acute GVHD after human allogeneic stem cell transplantation and indicates activation of indoleamine 2,3-dioxygenase. Blood 118:6971–6974. doi:10.1182/blood-2011-06-357814

    Article  CAS  Google Scholar 

  • Li YF, Macdonald RW (2005) Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review. Sci Total Environ 342:87–106. doi:10.1016/j.scitotenv.2004.12.027

    Article  CAS  Google Scholar 

  • Li Z, Agellon LB, Vance DE (2005) Phosphatidylcholine homeostasis and liver failure. J Biol Chem 280:37798–37802. doi:10.1074/jbc.M508575200

    Article  CAS  Google Scholar 

  • Li H, An Y, Zhang L, Lei H, Wang Y, Tang H (2013) Combined NMR and GC-MS analyses revealed dynamic metabolic changes associated with the carrageenan-induced rat pleurisy. J Proteome Res 12:5520–5534. doi:10.1021/pr400440d

    Article  CAS  Google Scholar 

  • Lu Y, Morimoto K, Takeshita T, Takeuchi T, Saito T (2000) Genotoxic effects of alpha-endosulfan and beta-endosulfan on human HepG2 cells. Environ Health Perspect 108:559–561. doi:10.2307/3454619

    CAS  Google Scholar 

  • Machala M et al (2004) Toxicity of hydroxylated and quinoid PCB metabolites: inhibition of gap junctional intercellular communication and activation of aryl hydrocarbon and estrogen receptors in hepatic and mammary cells. Chem Res Toxicol 17:340–347. doi:10.1021/tx030034v

    Article  CAS  Google Scholar 

  • Mannick JB (2007) Regulation of apoptosis by protein S-nitrosylation. Amino Acids 32:523–526. doi:10.1007/s00726-006-0427-6

    Article  CAS  Google Scholar 

  • Marc Rhoads J, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122. doi:10.1007/s00726-008-0225-4

    Article  CAS  Google Scholar 

  • McCombie G, Browning LM, Titman CM, Song M, Shockcor J, Jebb SA, Griffin JL (2009) Omega-3 oil intake during weight loss in obese women results in remodelling of plasma triglyceride and fatty acids metabolomics. Metabolomics 5:363–374. doi:10.1007/s11306-009-0161-7

    Article  CAS  Google Scholar 

  • Mehrmohamadi M, Liu X, Shestov AA, Locasale JW (2014) Characterization of the usage of the serine metabolic network in human cancer. Cell Rep 9:1507–1519. doi:10.1016/j.celrep.2014.10.026

    Article  CAS  Google Scholar 

  • Meijer AJ (2003) Amino acids as regulators and components of nonproteinogenic pathways. J Nutr 133:2057S–2062S

    CAS  Google Scholar 

  • Noel M, Loseto LL, Helbing CC, Veldhoen N, Dangerfield NJ, Ross PS (2014) PCBs are associated with altered gene transcript profiles in arctic beluga whales (Delphinapterus leucas). Environ Sci Technol 48:2942–2951. doi:10.1021/es403217r

    Article  CAS  Google Scholar 

  • Nomiyama K et al (2014) Toxicological assessment of polychlorinated biphenyls and their metabolites in the liver of Baikal seal (Pusa sibirica). Environ Sci Technol 48:13530–13539. doi:10.1021/es5043386

    Article  CAS  Google Scholar 

  • Pereira VM et al (2012) Endosulfan exposure inhibits brain AChE activity and impairs swimming performance in adult zebrafish (Danio rerio). Neurotoxicology 33:469–475. doi:10.1016/j.neuro.2012.03.005

    Article  CAS  Google Scholar 

  • Quinete N, Castro J, Fernandez A, Zamora-Ley IM, Rand GM, Gardinali PR (2013) Occurrence and distribution of endosulfan in water, sediment, and fish tissue: an ecological assessment of protected lands in south Florida. J Agric Food Chem 61:11881–11892. doi:10.1021/jf403140z

    Article  CAS  Google Scholar 

  • Schmidt WF et al (2014) Temperature-dependent Raman spectroscopic evidence of and molecular mechanism for irreversible isomerization of beta-endosulfan to alpha-endosulfan. J Agric Food Chem 62:2023–2030. doi:10.1021/jf404404w

    Article  CAS  Google Scholar 

  • Shao B et al (2012) DNA damage and oxidative stress induced by endosulfan exposure in zebrafish (Danio rerio). Ecotoxicology 21:1533–1540. doi:10.1007/s10646-012-0907-2

    Article  CAS  Google Scholar 

  • Shi X et al (2012) Metabolomic analysis of the effects of polychlorinated biphenyls in nonalcoholic fatty liver disease. J Proteome Res 11:3805–3815. doi:10.1021/pr300297z

    Article  CAS  Google Scholar 

  • Silva MH, Beauvais SL (2010) Human health risk assessment of endosulfan. I: Toxicology and hazard identification. Regul Toxicol Pharmacol: RTP 56:4–17. doi:10.1016/j.yrtph.2009.08.013

    Article  CAS  Google Scholar 

  • Sohn HY, Kwon CS, Kwon GS, Lee JB, Kim E (2004) Induction of oxidative stress by endosulfan and protective effect of lipid-soluble antioxidants against endosulfan-induced oxidative damage. Toxicol Lett 151:357–365. doi:10.1016/j.toxlet.2004.03.004

    Article  CAS  Google Scholar 

  • Song X et al (2015) Polychlorinated biphenyl quinone metabolite promotes p53-dependent DNA damage checkpoint activation, S-phase cycle arrest and extrinsic apoptosis in human liver hepatocellular carcinoma HepG2 cells. Chem Res Toxicol. doi:10.1021/acs.chemrestox.5b00320

  • Stanley KA, Curtis LR, Simonich SL, Tanguay RL (2009) Endosulfan I and endosulfan sulfate disrupts zebrafish embryonic development. Aquat Toxicol 95:355–361. doi:10.1016/j.aquatox.2009.10.008

    Article  CAS  Google Scholar 

  • Trousil S et al (2014) Alterations of choline phospholipid metabolism in endometrial cancer are caused by choline kinase alpha overexpression and a hyperactivated deacylation pathway. Cancer Res 74:6867–6877. doi:10.1158/0008-5472.can-13-2409

    Article  CAS  Google Scholar 

  • Tyagi R et al (2012) Urinary metabolomic phenotyping of nickel induced acute toxicity in rat: an NMR spectroscopy approach. Metabolomics 8:940–950. doi:10.1007/s11306-011-0390-4

    Article  CAS  Google Scholar 

  • Uboh FE, Asuquo EN, Eteng MU (2011) Endosulfan-induced hepatotoxicity is route of exposure independent in rats. Toxicol Ind Health 27:483–488. doi:10.1177/0748233710387011

    Article  CAS  Google Scholar 

  • van der Goot AT et al (2012) Delaying aging and the aging-associated decline in protein homeostasis by inhibition of tryptophan degradation. Proc Natl Acad Sci U S A 109:14912–14917. doi:10.1073/pnas.1203083109

    Article  Google Scholar 

  • Wang LF et al (2012) Application of 1H-NMR-based metabolomics for detecting injury induced by long-term microwave exposure in Wistar rats’ urine. Anal Bioanal Chem 404:69–78. doi:10.1007/s00216-012-6115-3

    Article  CAS  Google Scholar 

  • Weber J et al (2010) Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Sci Total Environ 408:2966–2984. doi:10.1016/j.scitotenv.2009.10.077

    Article  CAS  Google Scholar 

  • Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37:1–17. doi:10.1007/s00726-009-0269-0

    Article  Google Scholar 

  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    CAS  Google Scholar 

  • Xu J, Jiang H, Li J, Cheng KK, Dong J, Chen Z (2015) 1H NMR-based metabolomics investigation of copper-laden rat: a model of Wilson’s disease. PLoS One 10:e0119654. doi:10.1371/journal.pone.0119654

    Article  Google Scholar 

  • Yuk J, Simpson MJ, Simpson AJ (2013) 1-D and 2-D NMR-based metabolomics of earthworms exposed to endosulfan and endosulfan sulfate in soil. Environ Pollut 175:35–44. doi:10.1016/j.envpol.2012.12.007

    Article  CAS  Google Scholar 

  • Zeisel SH (2011) Nutritional genomics: defining the dietary requirement and effects of choline. J Nutr 141:531–534. doi:10.3945/jn.110.130369

    Article  CAS  Google Scholar 

  • Zhang L, Ye Y, An Y, Tian Y, Wang Y, Tang H (2011) Systems responses of rats to aflatoxin B1 exposure revealed with metabonomic changes in multiple biological matrices. J Proteome Res 10:614–623. doi:10.1021/pr100792q

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Z, Zhao Y, Cheng S, Ren H (2013) Identifying health effects of exposure to trichloroacetamide using transcriptomics and metabonomics in mice (Mus musculus). Environ Sci Technol 47:2918–2924. doi:10.1021/es3048976

    Article  CAS  Google Scholar 

  • Zhang L et al (2014) Metabonomic analysis reveals efficient ameliorating effects of acupoint stimulations on the menopause-caused alterations in mammalian metabolism. Sci Rep 4:3641. doi:10.1038/srep03641

    Article  Google Scholar 

  • Zhang L et al (2015a) Metabolomics reveals that aryl hydrocarbon receptor activation by environmental chemicals induces systemic metabolic dysfunction in mice. Environ Sci Technol 49:8067–8077. doi:10.1021/acs.est.5b01389

    Article  CAS  Google Scholar 

  • Zhang Y, Zhao F, Deng Y, Zhao Y, Ren H (2015b) Metagenomic and metabolomic analysis of the toxic effects of trichloroacetamide-induced gut microbiome and urine metabolome perturbations in mice. J Proteome Res 14:1752–1761. doi:10.1021/pr5011263

    Article  CAS  Google Scholar 

  • Zhu W et al (2011) Quantitative profiling of tryptophan metabolites in serum, urine, and cell culture supernatants by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 401:3249–3261. doi:10.1007/s00216-011-5436-y

    Article  CAS  Google Scholar 

  • Zhu J, Wu Y, Tang Q, Leng Y, Cai W (2014) The effects of choline on hepatic lipid metabolism, mitochondrial function and antioxidative status in human hepatic C3A cells exposed to excessive energy substrates. Nutrients 6:2552–2571. doi:10.3390/nu6072552

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (21207158, 21337005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 1351 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zhu, W., Wang, D. et al. A combined NMR- and HPLC-MS/MS-based metabolomics to evaluate the metabolic perturbations and subacute toxic effects of endosulfan on mice. Environ Sci Pollut Res 24, 18870–18880 (2017). https://doi.org/10.1007/s11356-017-9534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9534-z

Keywords

Navigation