Skip to main content
Log in

Effect of different nitrogen forms on the toxicity of Zn in wheat seedling root: a modeling analysis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Heavy metal stress in culture media is always rhizotoxic. Our study aims to investigate the role of negative potential (ψ 0) at root cell membrane surface (CMs) on modeling Zn2+ toxicity to wheat seedling roots and to examine the effects of different nitrogen forms (NH4 + and NO3 ) on ψ 0 and Zn rhizotoxicity. Solution culture experiments were conducted to measure the root elongation and Zn accumulation under Zn2+ exposure. The role of two nitrogen forms in affecting Zn2+ toxicity was compared, giving particular consideration to ψ 0 and Zn2+ activities at CMs ({Zn2+}0). Results showed that NH4 + alleviates Zn2+ rhizotoxicity and NO3 increases Zn2+ rhizotoxicity. In modeling the rhizotoxicity, root length correlated better with {Zn2+}0 than {Zn2+}b, and the predictive accuracy (r 2) of NH4 + treatment increased from 0.748 to 0.917 when incorporation of {Zn2+}0 and {Ca2+}0 into analysis. Oppositely, ψ 0 played a limited role in modeling Zn2+ rhizotoxicity and bioavailability in NO3 treated medium (r 2 = 0.609). Moreover, higher concentration of Zn in roots was found in NO3 treatment, compared with the NH4 + treatment. ψ 0 rather than the rhizotoxicity data correlated better with Zn accumulation especially in the NO3 treatment (r 2 > 0.7), which meant the electrical driving force at CMs playing a dominant role in modeling the metal accumulation. In conclusion, the alleviatory role of NH4 + on Zn toxicity and uptake was well explained and modeled by electrostatic effects at CMs. Though our data do not explore mechanisms for the NO3 -Zn2+ interactions, we propose that ψ 0 worked better in affecting the driving force for root Zn uptake, than influencing metal bioavailability at CMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • De Schamphelaere KAC, Janssen CR (2002) A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. Environ Sci Technol 36:48–54. doi:10.1021/es000253s

    Article  Google Scholar 

  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20:2383–2396. doi:10.1002/etc.5620201034

    Article  Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781. doi:10.2134/jeq1997.00472425002600030026x

    Article  CAS  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539. doi:10.2174/1568026013394831

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11. doi:10.1093/jexbot/53.366.1

    Article  CAS  Google Scholar 

  • Hassan MJ, Zhang G, Zhu Z (2008) Influence of cadmium toxicity on plant growth and nitrogen uptake in rice as affected by nitrogen form. J Plant Nutr 31:251–262. doi:10.1080/01904160701853753

    Article  CAS  Google Scholar 

  • Haynes R (1990) Active ion uptake and maintenance of cation-anion balance: a critical examination of their role in regulating rhizosphere pH. Plant Soil 126:247–264. doi:10.1007/BF00012828

    Article  CAS  Google Scholar 

  • Haynes R, Goh KM (1978) Ammonium and nitrate nutrition of plants. Biol Rev 53:465–510. doi:10.1111/j.1469-185X.1978.tb00862.x

    Article  CAS  Google Scholar 

  • Hepler PK (2009) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155. doi:10.1105/tpc.105.032508

    Article  Google Scholar 

  • Jalloh MA, Chen J, Zhen F, Zhang G (2009) Effect of different N fertilizer forms on antioxidant capacity and grain yield of rice growing under Cd stress. J Hazard Mater 162:1081–1085. doi:10.1016/j.jhazmat.2008.05.146

    Article  CAS  Google Scholar 

  • Kinraide TB (1994) Use of a Gouy-Chapman-Stern model for membrane-surface electrical potential to interpret some features of mineral rhizotoxicity. Plant Physiol 106:1583–1592. doi:10.1104/pp.106.4.1583

    Article  CAS  Google Scholar 

  • Kinraide TB (1998) Three mechanisms for the calcium alleviation of mineral toxicities. Plant Physiol 118:513–520. doi:10.1104/pp.118.2.513

    Article  CAS  Google Scholar 

  • Kinraide TB (2006) Plasma membrane surface potential (Ψ PM) as a determinant of ion bioavailability: a critical analysis of new and published toxicological studies and a simplified method for the computation of plant Ψ PM. Environ Toxicol Chem 25:3188–3198. doi:10.1897/06-103R.1

    Article  CAS  Google Scholar 

  • Kinraide TB (2009) Improved scales for metal ion softness and toxicity. Environ Toxicol Chem 28:525–533. doi:10.1897/08-208.1

    Article  CAS  Google Scholar 

  • Kinraide TB, Yermiyahu U (2007) A scale of metal ion binding strengths correlating with ionic charge, Pauling electronegativity, toxicity, and other physiological effects. J Inorg Biochem 101:1201–1213. doi:10.1016/j.jinorgbio.2007.06.003

    Article  CAS  Google Scholar 

  • Kinraide TB, Pedler JF, Parker DR (2004) Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant Soil 259:201–208. doi:10.1023/B:PLSO.0000020972.18777.99

    Article  CAS  Google Scholar 

  • Klotz F, Horst W (1988) Effect of ammonium-and nitrate-nitrogen nutrition on aluminium tolerance of soybean (Glycine max L.) Plant Soil 111:59–65. doi:10.1007/BF02182037

    Article  CAS  Google Scholar 

  • Kopittke PM, Menzies NW, de Jonge MD, McKenna BA, Donner E, Webb RI, Paterson DJ, Howard DL, Ryan CG, Glover CJ (2011a) In situ distribution and speciation of toxic copper, nickel, and zinc in hydrated roots of cowpea. Plant Physiol 156:663–673. doi:10.1104/pp.111.173716

    Article  CAS  Google Scholar 

  • Kopittke PM, Kinraide TB, Wang P, Blamey FPC, Reichman SM, Menzies NW (2011b) Alleviation of Cu and Pb rhizotoxicities in cowpea (Vigna unguiculata) as related to ion activities at root-cell plasma membrane surface. Environ Sci Technol 45:4966–4973. doi:10.1021/es1041404

    Article  CAS  Google Scholar 

  • Li D, Zhou D, Wang P, Li LZ (2011) Temperature affects cadmium-induced phytotoxicity involved in subcellular cadmium distribution and oxidative stress in wheat roots. Ecotoxicol Environ Saf 74:2029–2035. doi:10.1016/j.ecoenv.2011.06.004

    Article  CAS  Google Scholar 

  • Li X, Yang Y, Jia L, Chen H, Wei X (2013) Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicol Environ Saf 89:150–157. doi:10.1016/j.ecoenv.2012.11.025

    Article  CAS  Google Scholar 

  • Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: pollution and health risk assessment. Sci Total Environ 468:843–853. doi:10.1016/j.scitotenv.2013.08.090

    Article  Google Scholar 

  • Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P (2013) Enhanced nitrogen deposition over China. Nature 494:459–462. doi:10.1038/nature11917

    Article  CAS  Google Scholar 

  • Liu Z, Wang H, Xu R (2016) The effects of root surface charge and nitrogen forms on the adsorption of aluminum ions by the roots of rice with different aluminum tolerances. Plant Soil 1–11. doi:10.1007/s11104-016-2909-y

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Monsant AC, Tang C, Baker AJM (2008) The effect of nitrogen form on rhizosphere soil pH and zinc phytoextraction by Thlaspi caerulescens. Chemosphere 73:635–642. doi:10.1016/j.chemosphere.2008.07.034

    Article  CAS  Google Scholar 

  • Monsant AC, Wang Y, Tang C (2010) Nitrate nutrition enhances zinc hyperaccumulation in Noccaea caerulescens (Prayon). Plant Soil 336:391–404. doi:10.1007/s11104-010-0490-3

    Article  CAS  Google Scholar 

  • Nobel PS (1999) Physicochemical and environmental plant physiology. Academic press

  • Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PG, Delos CG, Di Toro DM, Dwyer RL, Galvez F et al (2002) The biotic ligand model: a historical overview. Comp Biochem Physiol C 133:3–35. doi:10.1016/S1532-0456(02)00112-6

    Google Scholar 

  • Pedler JF, Kinraide TB, Parker DR (2004) Zinc rhizotoxicity in wheat and radish is alleviated by micromolar levels of magnesium and potassium in solution culture. Plant Soil 259:191–199. doi:10.1023/B:PLSO.0000020958.42158.f5

    Article  CAS  Google Scholar 

  • Rout GR, Das P (2009) Effect of metal toxicity on plant growth and metabolism: I. Zinc. In: Sustainable Agriculture. Springer, pp 873–884. doi: 10.1007/978-90-481-2666-8

  • Song A, Li P, Li Z, Fan F, Nikolic M, Liang Y (2011) The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant Soil 344:319–333. doi:10.1007/s11104-011-0749-3

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Michael S (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotox Environ Safe 64:178–189. doi:10.1016/j.ecoenv.2005.03.013

    Article  CAS  Google Scholar 

  • Wang WX, Rainbow PS (2007) Subcellular partitioning and the prediction of cadmium toxicity to aquatic organisms. Environ Chem 3:395–399. doi:10.1071/EN06055

    Article  Google Scholar 

  • Wang P, Zhou D, Kinraide TB, Luo X, Li L, Li D, Zhang H (2008) Cell membrane surface potential (ψ 0) plays a dominant role in the phytotoxicity of copper and arsenate. Plant Physiol 148:2134–2143. doi:10.1104/pp.108.127464

    Article  CAS  Google Scholar 

  • Wang P, Zhou DM, Peijnenburg WJ, Li LZ, Weng N (2010) Evaluating mechanisms for plant-ion (Ca2+, Cu2+, Cd2+ or Ni2+) interactions and their effectiveness on rhizotoxicity. Plant Soil 334:277–288. doi:10.1007/s11104-010-0381-7

    Article  CAS  Google Scholar 

  • Wang P, Kopittke PM, De Schamphelaere KAC, Zhao FJ, Zhou DM, Lock K, Ma YB, Peijnenburg WJGM, McGrath SP (2011a) Evaluation of an electrostatic toxicity model for predicting Ni2+ toxicity to barley root elongation in hydroponic cultures and in soils. New Phytol 192:414–427. doi:10.1111/j.1469-8137.2011.03806.x

    Article  CAS  Google Scholar 

  • Wang P, Kinraide TB, Zhou D, Kopittke PM, Peijnenburg WJ (2011b) Plasma membrane surface potential: dual effects upon ion uptake and toxicity. Plant Physiol 155:808–820. doi:10.1104/pp.110.165985

    Article  CAS  Google Scholar 

  • Wang X, Hua L, Ma Y (2012) A biotic ligand model predicting acute copper toxicity for barley (Hordeum vulgare): influence of calcium, magnesium, sodium, potassium and pH. Chemosphere 89:89–95. doi:10.1016/j.chemosphere.2012.04.022

    Article  CAS  Google Scholar 

  • Wang YM, Kinraide TB, Wang P, Zhou DM, Hao XZ (2013) Modeling rhizotoxicity and uptake of Zn and Co singly and in binary mixture in wheat in terms of the cell membrane surface electrical potential. Environ Sci Technol 47:2831–2838. doi:10.1021/es3022107

    Article  CAS  Google Scholar 

  • Wang YM, Kinraide TB, Wang P, Hao XZ, Zhou DM (2014) Surface electrical potentials of root cell plasma membranes: implications for ion interactions, Rhizotoxicity, and uptake. Int J Mol Sci 15:22661–22677. doi:10.3390/ijms151222661

    Article  CAS  Google Scholar 

  • Wang W, Zhao XQ, Chen RF, Dong XY, Lan P, Ma JF, Shen RF (2015) Altered cell wall properties are responsible for ammonium-reduced aluminium accumulation in rice roots. Plant Cell Environ 38:1382–1390. doi:10.1111/pce.12490

    Article  CAS  Google Scholar 

  • Weibull W (1951) Wide applicability. J Appl Mech 103:293–297

    Google Scholar 

  • Xie H, Jiang R, Zhang F, McGrath S, Zhao F (2009) Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant Soil 318:205–215. doi:10.1007/s11104-008-9830-y

    Article  CAS  Google Scholar 

  • Yermiyahu U, Rytwo G, Brauer D, Kinraide T (1997) Binding and electrostatic attraction of lanthanum (La3+) and aluminum (Al3+) to wheat root plasma membranes. J Membr Biol 159:239–252. doi:10.1007/s002329900287

    Article  CAS  Google Scholar 

  • Yermiyahu U, Kinraide TB, Huang PM, Gobran GR (2005) Binding and electrostatic attraction of trace elements to plant root surfaces. Biogeochemistry of trace elements in the rhizosphere,365–89

  • Zornoza P, Robles S, Martin N (1999) Alleviation of nickel toxicity by ammonium supply to sunflower plants. Plant Soil 208:221–226. doi:10.1023/A:1004517414730

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (41601540; 31172034; 41125007), and the Foundation Research Project of Jiangsu Province (BK20160859).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Mei Zhou.

Additional information

Responsible editor: Yi-ping Chen

Electronic supplementary material

ESM 1

(DOC 167 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YM., Wang, P., Hao, XZ. et al. Effect of different nitrogen forms on the toxicity of Zn in wheat seedling root: a modeling analysis. Environ Sci Pollut Res 24, 18896–18906 (2017). https://doi.org/10.1007/s11356-017-9495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9495-2

Keywords

Navigation