Skip to main content
Log in

Removal of arsenic(III,V) by a granular Mn-oxide-doped Al oxide adsorbent: surface characterization and performance

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In order to remove arsenic (As) from contaminated water, granular Mn-oxide-doped Al oxide (GMAO) was fabricated using the compression method with the addition of organic binder. The analysis results of XRD, SEM, and BET indicated that GMAO was microporous with a large specific surface area of 54.26 m2/g, and it was formed through the aggregation of massive Al/Mn oxide nanoparticles with an amorphous pattern. EDX, mapping, FTIR, and XPS results showed the uniform distribution of Al/Mn elements and numerous hydroxyl groups on the adsorbent surface. Compression tests indicated a satisfactory mechanical strength of GMAO. Batch adsorption results showed that As(V) adsorption achieved equilibrium faster than As(III), whereas the maximum adsorption capacity of As(III) estimated from the Langmuir isotherm at 25 °C (48.52 mg/g) was greater than that of As(V) (37.94 mg/g). The As removal efficiency could be maintained in a wide pH range of 3~8. The presence of phosphate posed a significant adverse effect on As adsorption due to the competition mechanisms. In contrast, Ca2+ and Mg2+ could favor As adsorption via cation-bridge involvement. A regeneration method was developed by using sodium hydroxide solution for As elution from saturated adsorbents, which permitted GMAO to keep over 75% of its As adsorption capacity even after five adsorption–regeneration cycles. Column experiments showed that the breakthrough volumes for the treatment of As(III)-spiked and As(V)-spiked water (As concentration = 100 μg/L) were 2224 and 1952, respectively. Overall, GMAO is a potential adsorbent for effectively removing As from As-contaminated groundwater in filter application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arai Y, Elzinga EJ, Sparks DL (2001) X-ray absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide–water interface. J Colloid Interface Sci 235(1):80–88

    Article  CAS  Google Scholar 

  • Arco-Lazaro E, Agudo I, Clemente R, Bernal MP (2016) Arsenic(V) adsorption-desorption in agricultural and mine soils: effects of organic matter addition and phosphate competition. Environ Pollut 216:71–79

    Article  CAS  Google Scholar 

  • Basu T, Ghosh UC (2011) Influence of groundwater occurring ions on the kinetics of As (III) adsorption reaction with synthetic nanostructured Fe(III)–Cr(III) mixed oxide. Desalination 266:25–32

    Article  CAS  Google Scholar 

  • Belhachemi M, Addoun F (2011) Comparative adsorption isotherms and modeling of methylene blue onto activated carbons. Appl Water Sci 1:111–117

    Article  CAS  Google Scholar 

  • Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62(7):1723–1732

    Article  CAS  Google Scholar 

  • Casas N, Schell J, Pini R, Mazzotti M (2012) Fixed bed adsorption of CO2/H2 mixtures on activated carbon: experiments and modeling. Adsorption 18:143–161

    Article  CAS  Google Scholar 

  • Chang FF, Qu JH, Liu HJ, Liu RP, Zhao X (2009) Fe–Mn binary oxide incorporated into diatomite as an adsorbent for arsenite removal: preparation and evaluation. J Colloid Interface Sci 338(2):353–358

    Article  CAS  Google Scholar 

  • Chen L, Wang TJ, Wu HX, Jin Y, Zhang Y, Dou XM (2011) Optimization of a Fe–Al–Ce nano-adsorbent granulation process that used spray coating in a fluidized bed for fluoride removal from drinking water. Powder Technol 206(3):291–296

    Article  CAS  Google Scholar 

  • Chen ASC, Sorg TJ, Wang LL (2015) Regeneration of iron-based adsorptive media used for removing arsenic from groundwater. Water Res 77:85–97

    Article  CAS  Google Scholar 

  • Çiftçi TD, Henden E (2015) Nickel/nickel boride nanoparticles coated resin: a novel adsorbent for arsenic(III) and arsenic(V) removal. Powder Technol 269:470–480

    Article  Google Scholar 

  • Dou XM, Zhang YS, Wang HJ, Wang TJ, Wang YL (2011) Performance of granular zirconium-iron oxide in the removal of fluoride from drinking water. Water Res 45:3571–3578

    Article  CAS  Google Scholar 

  • Dou XM, Mohan D, Pittman CU Jr (2013) Arsenate adsorption on three types of granular schwertmannite. Water Res 47(9):2938–2948

    Article  CAS  Google Scholar 

  • Driehaus W, Seith R, Jekel M (1995) Oxidation of arsenate(III) with manganese oxides in water treatment. Water Res 29(1):297–305

    Article  CAS  Google Scholar 

  • Dutta D, Thakur D, Bahadur D (2015) SnO2 quantum dots decorated silica nanoparticles for fast removal of cationic dye (methylene blue) from wastewater. Chem Eng J 281:482–490

    Article  CAS  Google Scholar 

  • Fletcher AJ, Thomas KM, Rosseinsky MJ (2005) Flexibility in metal-organic framework materials: impact on sorption properties. J Solid State Chem 178(8):2491–2510

    Article  CAS  Google Scholar 

  • Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

  • Freundlich HMF (1906) Ünber die adsorption in lösungen. Z Phys Chem (Leipzig) 19(57A):385–470

    Google Scholar 

  • Gimbert F, Crini NM, Renault F, Badot PM, Crini G (2008) Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. J Hazard Mater 157:34–46

    Article  CAS  Google Scholar 

  • Guan X, Ma J, Dong H, Jiang L (2009) Removal of arsenic from water: effect of calcium ions on As(III) removal in the KMnO4–Fe(II) process. Water Res 43(20):5119–5128

    Article  CAS  Google Scholar 

  • Gupta K, Ghosh UC (2009) Arsenic removal using hydrous nanostructure iron(III)–titanium(IV) binary mixed oxide from aqueous solution. J Hazard Mater 161(2–3):884–892

    Article  CAS  Google Scholar 

  • Han CY, Pu HP, Li HY, Deng L, Huang S, He SF, Luo YM (2013) The optimization of As(V) removal over mesoporous alumina by using response surface methodology and adsorption mechanism. J Hazard Mater 254–255:301–309

    Article  Google Scholar 

  • Ho YS, Mckay G (1998a) Sorption of dye from aqueous solution by peat. Chem Eng J 70:115–124

    Article  CAS  Google Scholar 

  • Ho YS, Mckay G (1998b) Kinetic models for the sorption of dye from aqueous solution by wood. J Environ Sci Health B Process Saf Environ Prot 76(B):184–185

    Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Hong HJ, Park IS, Ryu T, Ryu J, Kim BG, Chung KS (2013) Granulation of Li1.33Mn1.67O4(LMO) through the use of cross-linked chitosan for the effective recovery of Li+ from seawater. Chem Eng J 234:16–22

    Article  CAS  Google Scholar 

  • Hu X, Ding ZH, Zimmerman AR, Wang SS, Gao B (2015) Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res 68:206–216

    Article  CAS  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133(1):1–16

    Article  CAS  Google Scholar 

  • Imyim A, Sirithaweesit T, Ruangpornvisuti V (2016) Arsenite and arsenate removal from wastewater using cationic polymer-modified waste tyre rubber. J Environ Manag 166:574–578

    Article  CAS  Google Scholar 

  • Jadhav SV, Bringas E, Yadav GD, Rathod VK, Ortiz I, Marathe KV (2015) Arsenic and fluoride contaminated groundwaters: a review of current technologies for contaminants removal. J Environ Manag 162(1):306–325

    Article  CAS  Google Scholar 

  • Jang JH, Dempsey BA (2008) Coadsorption of arsenic(III) and arsenic(V) onto hydrous ferric oxide: effects on abiotic oxidation of arsenic(III), extraction efficiency, and model accuracy. Environ Sci Technol 42:2893–2898

    Article  CAS  Google Scholar 

  • Kanematsu M, Young TM, Fukushi K, Green PG, Darby JL (2013) Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: modeling competitive adsorption consistent with spectroscopic and molecular evidence. Geochim Cosmochim Acta 106:404–428

    Article  CAS  Google Scholar 

  • Kang L, Zhang M, Liu ZH, Ooi K (2007) IR spectra of manganese oxides with either layered or tunnel structures. Spectrochim Acta A Mol Biomol Spectrosc 67:864–869

    Article  Google Scholar 

  • Kumar E, Bhatnagar A, Hogland W, Marques M, Sillanpää M (2014) Interaction of anionic pollutants with Al-based adsorbents in aqueous media—a review. Chem Eng J 241:443–456

    Article  CAS  Google Scholar 

  • Kumar PS, Flores RQ, Sjöstedt C, Önnby L (2016) Arsenic adsorption by iron–aluminium hydroxide coated onto macroporous supports: insights from X-ray absorption spectroscopy and comparison with granular ferric hydroxides. J Hazard Mater 302:166–174

    Article  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Lata S, Samadder SR (2016) Removal of arsenic from water using nano adsorbents and challenges: a review. J Environ Manag 166:387–406

    Article  CAS  Google Scholar 

  • Lenoble V, Laclautre C, Serpaud B, Deluchat V, Bollinger JC (2004) As(V) retention and As(III) simultaneous oxidation and removal on a MnO2-loaded polystyrene resin. Sci Total Environ 326:197–207

    Article  CAS  Google Scholar 

  • Li Z, Deng S, Yu G, Huang J, Lim VC (2010) As(V) and As(III) removal from water by a Ce–Ti oxide adsorbent: behavior and mechanism. Chem Eng J 161:106–113

    Article  CAS  Google Scholar 

  • Li X, He K, Pan BC, Zhang SJ, Lu L, Zhang WM (2012a) Efficient As(III) removal by macroporous anion exchanger-supported Fe–Mn binary oxide: behavior and mechanism. Chem Eng J 193–194:131–138

    Article  Google Scholar 

  • Li Y, Liu JR, Jia SY, Guo JW, Zhuo J, Na P (2012b) TiO2 pillared montmorillonite as a photoactive adsorbent of arsenic under UV irradiation. Chem Eng J 191:66–74

    Article  CAS  Google Scholar 

  • Li WY, Liu J, Chen H, Deng Y, Zhang B, Wang Z, Zhang X, Hong S (2013) Application of oxalic acid cross-linking activated alumina/chitosan biocomposites in defluoridation from aqueous solution. Investigation of adsorption mechanism. Chem Eng J 225:865–872

    Article  CAS  Google Scholar 

  • Liu T, Wu K, Xue W, Ma C (2015) Characteristics and mechanisms of arsenate adsorption onto manganese oxide-doped aluminum oxide. Environ Prog Sustain Energy 34(4):1009–1018

    Article  CAS  Google Scholar 

  • Ma Y, Zheng YM, Chen JP (2011) A zirconium based nanoparticle for significantly enhanced adsorption of arsenate: synthesis, characterization and performance. J Colloid Interface Sci 354:785–792

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Article  CAS  Google Scholar 

  • Mangwandi C, Suhaimi SNA, Liu JT, Dhenge RM, Albadarin AB (2016) Design, production and characterisation of granular adsorbent material for arsenic removal from contaminated wastewater. Chem Eng Res Des 110:70–81

    Article  CAS  Google Scholar 

  • Masue Y, Loeppert RH, Kramer TA (2007) Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum: iron hydroxides. Environ Sci Technol 41:837–842

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142(1–2):1–53

    Article  CAS  Google Scholar 

  • Ntim SA, Mitra S (2012) Adsorption of arsenic on multiwall carbon nanotube-zirconia nanohybrid for potential drinking water purification. J Colloid Interf Sci 375:154–159

    Article  Google Scholar 

  • Ociński D, Jacukowicz-Sobala I, Mazur P, Raczyk J, Kociołek-Balawejder E (2016) Water treatment residuals containing iron and manganese oxides for arsenic removal from water—characterization of physicochemical properties and adsorption studies. Chem Eng J 294:210–221

    Article  Google Scholar 

  • Peng B, Song TT, Wang T, Chai LY, Yang WC, Li XR, Li CF, Wang HY (2016) Facile synthesis of Fe3O4@Cu(OH)2 composites and their arsenic adsorption application. Chem Eng J 299:15–22

    Article  CAS  Google Scholar 

  • Qi JY, Zhang GS, Li HN (2015) Efficient removal of arsenic from water using a granular adsorbent: Fe–Mn binary oxide impregnated chitosan bead. Bioresour Technol 193:243–249

    Article  CAS  Google Scholar 

  • Rahman MS (2007) The prospect of natural additives in enhanced oil recovery and water purification operations. M.A.Sc. thesis, Dalhousie University, Canada

  • Ranđelović MS, Zarubica AR, Purenović MM (2012) New composite materials in the technology for drinking water purification from ionic and colloidal pollutants. In: Hu N (ed) Composites and their applications. InTech, Rijeka, pp 273–300

    Google Scholar 

  • Ren Z, Zhang G, Chen JP (2011) Adsorptive removal of arsenic from water by an iron–zirconium binary oxide adsorbent. J Colloid Interface Sci 358:230–237

    Article  CAS  Google Scholar 

  • Ringot D, Lerzy B, Chaplain K, Bonhoure JP, Auclair E, Laron-delle Y (2007) In vitro biosorption of ochratoxin A on the yeast industry by-products: comparison of isotherm models. Bioresour Technol 98:1812–1821

    Article  CAS  Google Scholar 

  • Roy E, Patra S, Madhuri R, Sharma PK (2016) Europium doped magnetic graphene oxide-MWCNT nanohybrid for estimation and removal of arsenate and arsenite from real water samples. Chem Eng J 299:244–254

  • Samarghandi MR, Hadi M, Moayedi S, Askari FB (2009) Two parameter isotherms of methyl orange sorption by pinecone derived activated carbon. Iran J Environ Health Sci Eng 6(4):285–294

    CAS  Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, Jeong SK, Grace AN, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306(15):1116–1137

    Article  CAS  Google Scholar 

  • Sigdel A, Park J, Kwak H, Park PK (2016) Arsenic removal from aqueous solutions by adsorption onto hydrous iron oxide-impregnated alginate beads. J Ind Eng Chem 35:277–286

    Article  CAS  Google Scholar 

  • Sips R (1948) On the structure of a catalyst surface. J Chem Phys 16:490–495

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of source, behaviors and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    Article  CAS  Google Scholar 

  • Sparks DL (1989) Kinetics of soil chemical processes. Academic, New York

    Google Scholar 

  • Stachowicz M, Hiemstra T, van Riemsdijk WH (2008) Multi-competitive interaction of As(III) and As(V) oxyanions with Ca2+, Mg2+, PO4 3−, and CO3 2− ions on goethite. J Colloid Interface Sci 320(2):400–414

    Article  CAS  Google Scholar 

  • Tan XF, Liu YG, Gu YL, Xu Y, Zeng GM, Hu XJ, Liu SB, Wang X, Liu SM, Li J (2016) Biochar-based nano-composites for the decontamination of wastewater: a review. Bioresour Technol 212:318–333

    Article  CAS  Google Scholar 

  • Ulmanu M, Marañón E, Fernández Y, Castrillón L, Anger I, Dumitriu D (2003) Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents. Water Air Soil Pollut 142:357–373

    Article  CAS  Google Scholar 

  • Umpleby RJ, Baxter S, Rampey AM, Shimizu KD (2004) Characterization of the heterogeneous binding site affinity distributions in molecularly imprinted polymers. J Chromatogr B 804(1):141–149

    Article  CAS  Google Scholar 

  • Uppal H, Hemlata, Tawale J, Singh N (2016) Zinc peroxide functionalized synthetic graphite: an economical and efficient adsorbent for adsorption of arsenic(III) and(V). J Environ Chem Eng 4:2964–2975

    Article  CAS  Google Scholar 

  • Wang J, Xu WH, Chen L, Huang XJ, Liu JH (2014) Preparation and evaluation of magnetic nanoparticles impregnated chitosan beads for arsenic removal from water. Chem Eng J 251:25–34

    Article  CAS  Google Scholar 

  • Wang LL, Han C, Nadagouda MN, Dionysiou DD (2016) An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid. J Hazard Mater 313:283–290

    Article  CAS  Google Scholar 

  • Weber WJ Jr, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89(2):31–60

    Google Scholar 

  • Wen ZP, Zhang YL, Guo S, Chen R (2017) Facile template-free fabrication of iron manganese bimetal oxides nanospheres with excellent capability for heavy metals removal. J Colloid Interface Sci 486:211–218

    Article  CAS  Google Scholar 

  • World Health Organization (2008) Guidelines for drinking water quality, vol Volume 1, 3rd edn. World Health Organization, Geneva, p 306

    Google Scholar 

  • Wu K, Liu T, Xue W, Wang XC (2012) Arsenic(III) oxidation/adsorption behaviors on a new bimetal adsorbent of Mn-oxide-doped Al oxide. Chem Eng J 192:343–349

    Article  CAS  Google Scholar 

  • Yin H, Feng XH, Qiu GH, Tan WF, Liu F (2011) Characterization of Co-doped birnessites and application for removal of lead and arsenite. J Hazard Mater 188(1–3):341–349

    Article  CAS  Google Scholar 

  • Yoon Y, Park WK, Hwang TM, Yoon DH, Yang WS, Kang JW (2016) Comparative evaluation of magnetite–graphene oxide andmagnetite-reduced graphene oxide composite for As(III) and As(V) removal. J Hazard Mater 304:196–204

    Article  CAS  Google Scholar 

  • Zhang Y, Yang M, Dou XM, He H, Wang DS (2005) Arsenate adsorption on an Fe–Ce bimetal oxide adsorbent: role of surface properties. Environ Sci Technol 39(18):7246–7253

    Article  CAS  Google Scholar 

  • Zhang GS, Qu JH, Liu HJ, Liu RP, Wu RC (2007) Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal. Water Res 41(9):1921–1928

    Article  CAS  Google Scholar 

  • Zhang Y, Dou XM, Zhao B, Yang M, Takayama T, Kato S (2010) Removal of arsenic by a granular Fe–Ce oxide adsorbent: fabrication conditions and performance. Chem Eng J 162(1):164–170

    Article  CAS  Google Scholar 

  • Zhang GS, Khorshed A, Chen JP (2013a) Simultaneous removal of arsenate and arsenite by a nanostructured zirconium–manganese binary hydrous oxide: behavior and mechanism. J Colloid Interface Sci 397:137–143

    Article  CAS  Google Scholar 

  • Zhang G, Ren Z, Zhang X, Chen J (2013b) Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res 47(12):4022–4031

    Article  CAS  Google Scholar 

  • Zhang W, Fu J, Zhang GS, Zhang XW (2014) Enhanced arsenate removal by novel Fe–La composite (hydr)oxides synthesized via coprecipitation. Chem Eng J 251:69–79

    Article  CAS  Google Scholar 

  • Zhao K, Guo HM, Zhou XQ (2014) Adsorption and heterogeneous oxidation of arsenite on modified granular natural siderite: characterization and behaviors. Appl Geochem 48:184–192

    Article  CAS  Google Scholar 

  • Zhu NY, Yan TM, Qiao J, Cao HL (2016) Adsorption of arsenic, phosphorus and chromium by bismuth impregnated biochar: adsorption mechanism and depleted adsorbent utilization. Chemosphere 164:32–40

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant No. 51578440/51208415), Program for Innovative Research Team (PIRT) in Shaanxi Province (Grant No. 2013KCT-13), Key Laboratory Project of Education Department of Shaanxi Province (Grant No. 14JS042), the Research Fund of Tianjin Key Laboratory of Aquatic Science and Technology (Grant No. TJKLAST-ZD-2016-08), and Major Science and Technology Program for Water Pollution Control and Treatment (Grant No. 2013ZX07310-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Wu.

Additional information

Responsible editor: Guilherme L. Dotto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Zhang, J., Chang, B. et al. Removal of arsenic(III,V) by a granular Mn-oxide-doped Al oxide adsorbent: surface characterization and performance. Environ Sci Pollut Res 24, 18505–18519 (2017). https://doi.org/10.1007/s11356-017-9465-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9465-8

Keywords

Navigation