Skip to main content
Log in

Determination of carbamazepine and 12 degradation products in various compartments of an outdoor aquatic mesocosm by reliable analytical methods based on liquid chromatography-tandem mass spectrometry

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aims of this work are to develop suitable analytical methods to determine the widely used anticonvulsant carbamazepine and 12 of its degradation/transformation products in water, sediment, fish (Gasterosteus aculeatus) and mollusc (Dreissena polymorpha). Protocols based on solid phase extraction for water, pressurized-liquid extraction for sediments and QuEChERS (quick easy cheap efficient rugged and safe) extraction for both organisms followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) are developed, validated and finally applied to samples collected during a 6-month experiment in outdoor mesocosms. Very low detection limits are reached, allowing environmentally realistic doses (namely, 0.05, 0.5 and 5 μg/L nominal concentrations) to be employed. The results indicate several metabolites and/or transformation products in each compartment investigated, with concentrations sometimes being greater than that of the parent carbamazepine. Biotic degradation of carbamazepine is demonstrated in water, leading to 10,11-dihydrocarbamazepine and 10,11-epoxycarbamazepine. In sediment, the degradation results in the formation of acridine, and 2- and 3-hydroxycarbamazepine. Finally, in both organisms, a moderate bioaccumulation is observed together with a metabolization leading to 10,11-epoxycarbamazepine in fish and 2-hydroxycarbamazepine in mollusc. Acridone is also present in fish. This study provides new and interesting data, helping to elucidate how chronic exposure to carbamazepine at relevant concentrations may affect impact freshwater ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bergé A, Vulliet E (2015) Development of a method for the analysis of hormones and pharmaceuticals in earthworms by quick, easy cheap effective, rugged and safe (QuEChERS) extraction followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Anal Bioanal Chem 26:7995–8008

    Article  Google Scholar 

  • Berlioz-Barbier A, Buleté A, Faburé J, Garric J, Cren-Olivé C, Vulliet E (2014) Multi-residue analysis of emerging pollutants in benthic invertebrates by modified micro-quick-easy-cheap-efficient-rugged-safe extraction and nanoliquid chromatography-nanospray–tandem mass spectrometry analysis. J Chromatogr A 1367:16–32

    Article  CAS  Google Scholar 

  • Besse JP, Garric J (2008) Human pharmaceuticals in surface waters: implementation of a prioritization methodology and application to the French situation. Toxicol Lett 176:104–123

    Article  CAS  Google Scholar 

  • Bialk-Bielinska A, Kumirska J, Borecka M, Caban M, Paszkiewicz M, Pazdro K, Stepnowski P (2016) Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment samples. J Pharm Biomed Anal 121:271–296

    Article  CAS  Google Scholar 

  • Caquet T, Lagadic L, Sheffield SR (2000) Mesocosms in ecotoxicology (1) outdoor aquatic systems. Rev Environ Contam Toxicol 165:1–38

    CAS  Google Scholar 

  • Chen F, Gong Z, Kelly BC (2015) Rapid analysis of pharmaceuticals and personal care products in fish plasma micro-aliquots using liquid chromatography tandem mass spectrometry. J Chromatogr A 1383:104–111

    Article  CAS  Google Scholar 

  • Chiron S, Minero C, Vione D (2006) Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters. Environ Sci Technol 40:5977–5983

    Article  CAS  Google Scholar 

  • Contardo-Jara V, Lorenz C, Pflugmacher S, Nützmann G, Kloas W, Wiegand C (2011) Exposure to human pharmaceuticals carbamazepine, ibuprofen and bezafibrate causes molecular effects in Dreissena polymorpha. Aquat Toxicol 105:428–437

    Article  CAS  Google Scholar 

  • Daniele G, Fieu M, Joachim S, Baudoin R, Bado-Nilles A, James-Calas A, Andres S, Vulliet E (2016b) Rapid analysis of diclofenac and some of its transformation products in the three-spined stickleback, Gasterosteus aculeatus, by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 408:4435–4444

    Article  CAS  Google Scholar 

  • Daniele G, Fieu M, Joachim S, James-Calas A, Andres S, Baudoin R, Bonnard M, Bonnard I, Geffard A, Vulliet E (2016a) Development of a multi-residue analysis of diclofenac and some transformation products in bivalves using QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Application to samples from mesocosm studies. Talanta 155:1–7

    Article  CAS  Google Scholar 

  • de Almeida CAA, Oliveira MS, Mallmann CC, Martins AF (2015) Determination of psychoactive drugs carbamazepine and diazepam in hospital effluent and identification of their metabolites. Environ Sci Pollut Res 22:17192–17201

    Article  Google Scholar 

  • De Kermoysan G, Joachim S, Baudoin P, Lonjaret M, Tebby C, Lesaulnier F, Lestremau F, Chatellier C, Akrour Z, Pheron E, others (2013) Effects of bisphenol A on different trophic levels in a lotic experimental ecosystem. Aquat Toxicol 144:186–198

    Article  Google Scholar 

  • Donner E, Kosjek T, Qualmann S, Kusk KO, Heath E, Revitt DM, Ledin A, Andersen HR (2013) Ecotoxicity of carbamazepine and it UV photolysis transformation products. Sci Total Environ 443:870–876

    Article  CAS  Google Scholar 

  • Durán-Alvarez J, Prado B, González D, Sánchez Y, Jimménez-Cisneros B (2015) Environmental fate of naproxen, carbamazepine and triclosan in wastewater, surface water and wastewater irrigated soil—results of laboratory scale experiments. Sci Total Environ 538:350–362

    Article  Google Scholar 

  • EMEA (European Medicine Agency) (2006) Guideline on the environmental risk assessment of medicinal products for human use. EMEA/CHMP/SWP/4447/00, London

    Google Scholar 

  • Foster HR, Burton GA, Basu N, Werner EE (2010) Chronic exposure to fluoxetine (Prozac) causes developmental delays in Rana pipiens larvae. Environ Toxicol Chem 29:2845–2850

    Article  CAS  Google Scholar 

  • Gros M, Rodriguez-Mozaz S, Barcelo D (2012) Fast comprehensive multiresidue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J Chromatogr A 1248:104–121

    Article  CAS  Google Scholar 

  • Gurk R, Rossmann J, Schubert S, Sandmann T, Rößler M, Oertel R, Fauler J (2015) Development of a SPE-HPLC-MS/MS method for the determination of most prescribed pharmaceuticals and related metabolites in urban sewage samples. J Chromatogr B 990:23–30

    Article  Google Scholar 

  • Huerta B, Rodriguez-Mozaz S, Barcelo D (2012) Pharmaceuticals in biota in the aquatic environment: analytical methods and environmental implications. Anal Bioanal Chem 404:2611–2624

    Article  CAS  Google Scholar 

  • Idder S, Ley L, Mazellier P, Budzinski H (2013) Quantitative on-line preconcentration-liquid chromatography coupled with tandem mass spectrometry method for the determination of pharmaceutical compounds in water. Anal Chim Acta 805:107–115

    Article  CAS  Google Scholar 

  • International Conference on Harmonization (2005) Q2 (R1): validation of analytical procedures: text and methodology

  • Jarvis AL, Bernot MJ, Bernot RJ (2014) The effect of the psychiatric drug carbamazepine on freshwater invertebrate communities and ecosystem dynamics. Sci Total Environ 496:461–470

    Article  CAS  Google Scholar 

  • Jurado A, López-serna R, Vásquez-Suñé E, Carrera J, Pujades E, Petrovic M, Barceló D (2014) Occurrence of carbamazepine and five metabolites in urban aquifer. Chemosphere 115:47–53

    Article  CAS  Google Scholar 

  • Katsiadaki I, Scott AP, Mayer I (2002) The potential of the three-spined stickleback (Gasterosteus aculeatus L.) as a combined biomarker for oestrogens and androgens in European waters. Mar Environ Res 54:725–728

    Article  CAS  Google Scholar 

  • Kosjek T, Andersen HR, Kompare B, Ledin A, Heath E (2009) Fate of carbamazepine during water treatment. Environ Sci Technol 43:6256–6261

    Article  CAS  Google Scholar 

  • Löffler D, Römbke J, Meller M, Ternes TA (2005) Environmental fate of pharmaceuticals in water/sediment systems. Environ Sci Technol 39:5209–5218

    Article  Google Scholar 

  • Loos R, Manfred Gawlik B, Locoro G, Rimaviciute E, Contini S, Bidoglio G (2009) EU-wide survey of polar organic persistent pollutants in European river waters. Environ Pollut 157:561–568

    Article  CAS  Google Scholar 

  • Luo Y, Guo W, Hao Ngo H, Duc Nghiem L, Ibney Hai F, Zhang J, Liang S, Wang XCA (2014) Review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473-474:619–641

    Article  CAS  Google Scholar 

  • Martínez Bueno MJ, Boillot C, Fenet H, Chiron S, Casellas C, Gómez E (2013) Fast and easy extraction combined with high resolution–mass spectrometry for residue analysis of two anticonvulsants and their transformation products in marine mussels. J Chromatogr A 1305:27–34

    Article  Google Scholar 

  • Miao X-S, Metcalfe CD (2003) Determination of carbamazepine and its metabolites in aqueous samples using liquid chromatography-electrospray tandem mass spectrometry. Anal Chem 75:3731–3738

    Article  CAS  Google Scholar 

  • Nara Ribeiro de Sousa D, Martins Grosseli G, Aparecido Mozeto A, Lajarim Carneiro R, Sergio Fadini P (2015) Ultrasound-assisted extraction method for the simultaneous determination of emerging contaminants in freshwater sediments. J Sep Sci 38:3454–3460

    Article  Google Scholar 

  • Nietch CT, Quinlan EL, Lazorchak JM, Impellitteri CA, Raikow D, Walters D (2013) Effects of a chronic lower range of triclosan exposure on a stream mesocosm community. Environ Toxicol Chem 32:2874–2887

    Article  CAS  Google Scholar 

  • Palais F, Mouneyrac C, Dedourge-Geffard O, Giambérini L, Biagianti-Risbourg S, Geffard A (2011) One-year monitoring of reproductive and energy reserve cycles in transplanted zebra mussels (Dreissena polymorpha). Chemosphere 83:1062–1073

    Article  CAS  Google Scholar 

  • Petrie B, Youdan J, Barden R, Kasprzyk-Horden B (2016) Multi-residue analysis of 90 emerging contaminants in liquid and solid environmental matrices by ultra-high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A 1431:64–78

    Article  CAS  Google Scholar 

  • Radke M, Maier MP (2014) Lessons learned from water/sediment-testing of pharmaceuticals. Water Res 55:63–73

    Article  CAS  Google Scholar 

  • Salvia MV, Fieu M, Vulliet E (2015) Determination of tetracycline and fluoroquinolone antibiotics at traces levels in sludge and soil. Appl Environ Soil Sci 2015: Article ID 435741, 10 p

  • Sanchez W, Katsiadaki I, Piccini B, Ditche JM, Porcher JM (2008) Biomarker responses in wild three-spined stickleback (Gasterosteus aculeatus L.) as a useful tool for freshwater

  • Subedi B, Mottaleb MA, Chamblissa CK, Usenko S (2011) Simultaneous analysis of select pharmaceuticals and personal care products in fish tissue using pressurized liquid extraction combined with silica gel cleanup. J Chromatogr A 1218:6278–6284

    Article  CAS  Google Scholar 

  • Valdés ME, Amé MV, Bistoni MA, Wunderlin DA (2014) Occurrence and bioaccumulation of pharmaceutical in a fish species inhabiting the Suquía River basin (Córdoba, Argentina). Sci Total Environ 472:389–396

    Article  Google Scholar 

  • Valdés ME, Huerta B, Wunderlin DA, Bistoni MA, Barcelo D, Rodriguez-Mozaz S (2016) Bioaccumulation and bioconcentration of carbamazepine and other pharmaceuticals in fish under field and controlled laboratory experiments. Evidences of carbamazepine metabolization by fish. Sci Total Environ 557-558:58–67

    Article  Google Scholar 

  • Vasquez-Roig P, Blasco C, Pico Y (2013) Advances in the analysis of legal and illegal drugs in the aquatic environment. Trends Anal Chem 50:65–77

    Article  Google Scholar 

  • Voets J, Talloen W, de Tender T, van Dongen S, Covaci A, Blust R, Bervoets L (2006) Microcontaminant accumulation, physiological condition and bilateral asymmetry in zebra mussels (Dreissena polymorpha) from clean and contaminated surface waters. Aquat Toxicol 79:213–225

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was part of the project DOREMIPHARM (Development of robust tools to assess hazard relative to pharmaceuticals in aquatic ecosystems) financially supported by the ANSM (Agence Nationale de Sécurité du Médicament et des produits de santé).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuelle Vulliet.

Additional information

Responsible editor: Roland Kallenborn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daniele, G., Fieu, M., Joachim, S. et al. Determination of carbamazepine and 12 degradation products in various compartments of an outdoor aquatic mesocosm by reliable analytical methods based on liquid chromatography-tandem mass spectrometry. Environ Sci Pollut Res 24, 16893–16904 (2017). https://doi.org/10.1007/s11356-017-9297-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9297-6

Keywords

Navigation