Skip to main content

Advertisement

Log in

Citrus stand ages regulate the fraction alteration of soil organic carbon under a citrus/Stropharua rugodo-annulata intercropping system in the Three Gorges Reservoir area, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Soil carbon fractionation is a valuable indicator in assessing stabilization of soil organic matter and soil quality. However, limited studies have addressed how different vegetation stand ages under intercropping agroforestry systems, could affect organic carbon (OC) accumulation in bulk soil and its physical fractions. A field study thus investigated the impact of citrus plantation age (15-, 25-, and 45-year citrus) on the bulk soil organic carbon (SOC) and SOC fractions and yields of Stropharia rugoso-annulata (SRA) in the Three Gorges Reservoir area, Chongqing, China. Results indicated that the intercropping practice of SRA with citrus significantly increased the SOC by 57.4–61.6% in topsoil (0–10 cm) and by 24.8–39.9% in subsoil (10–30 cm). With a significantly higher enhancement under the 25-year citrus stand than the other two stands, all these citrus stands of three ages also resulted in a significant increase of free particulate OC (fPOC, 60.1–62.4% in topsoil and 34.8–46.7% in subsoil), intra-micro aggregate particulate OC (iPOC, 167.6–206.0% in topsoil and 2.77–61.09% in subsoil), and mineral-associated OC (MOC, 43.6–46.5% in topsoil and 26.0–51.5% in subsoil). However, there were no significant differences in yields of SRA under three citrus stands. Our results demonstrated that citrus stand ages did play an important role in soil carbon sequestration and fractionation under a citrus/SRA intercropping system, which could therefore provide a sustainable agroforestry system to enhance concurrently the SOC accumulation while mitigating farmland CO2 emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aumtong S, Magid J, Bruun S, Neergaard AD (2009) Relating soil carbon fractions to land use in sloping uplands in northern Thailand. Agriculture Ecosystems and Environment 131:229–239. doi:10.1016/j.agee.2009.01.013

    Article  CAS  Google Scholar 

  • Beedy TL, Snapp SS, Akinnifesi FK, Sileshi GW (2010) Impact of Gliricidia sepium intercropping on soil organic matter fractions in a maize-based cropping system. Agriculture Ecosystems and Environment 138:139–146. doi:10.1016/j.agee.2010.04.008

    Article  Google Scholar 

  • Blair GJ, Rdb L, Lise L (1995) Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust J Agric Res 46:1459–1466. doi:10.1071/AR9951459

    Article  Google Scholar 

  • Bonenfant-Magne M, Magne C, Lemoine C (2000) Preparation of a lignocellulosic growth substrate for Stropharia rugoso-annulata. Can J Bot 78:175–180. doi:10.1139/b99-175

    Google Scholar 

  • Bonet JA, Fischer CR, Colinas C (2004) The relationship between forest age and aspect on the production of sporocarps of ectomycorrhizal fungi in Pinus sylvestris forests of the central Pyrenees. For Ecol Manag 203:157–175. doi:10.1016/j.foreco.2004.07.063

    Article  Google Scholar 

  • Budiadi IHT, Sabarnurdin MS, Suryanto P, Kanazawa Y (2006) Biomass cycling and soil properties in an agroforestry-based plantation system of kayu putih (Melaleuca leucadendron LINN) in East Java, Indonesia. Agrofor Syst 67:135–145. doi:10.1007/s10457-005-1108-2

    Article  Google Scholar 

  • Carmo FFD, Figueiredo CCD, Ramos MLG, Vivaldi LJ, Araújo LG (2012) Granulometric fractions of organic matter of a latosol under no-till with grasses. Bioscience Journal 28:420–431

    Google Scholar 

  • Chapagain T, Riseman A (2014) Barley-pea intercropping: effects on land productivity, carbon and nitrogen transformations. Field Crop Res 166:18–25. doi:10.1016/j.fcr.2014.06.014

    Article  Google Scholar 

  • Conceição PC, Dieckow J, Bayer C (2013) Combined role of no-tillage and cropping systems in soil carbon stocks and stabilization. Soil Tillage Res 129:40–47. doi:10.1016/j.still.2013.01.006

    Article  Google Scholar 

  • Cong WF, Hoffland E, Li L, Six J, Sun JH, Bao XJ, Zhang FS, Werf WVD (2015) Intercropping enhances soil carbon and nitrogen. Glob Chang Biol 21:1715–1726. doi:10.1111/gcb.12738

    Article  Google Scholar 

  • Dorji T, Odeh IOA, Field DJ (2015) Elucidating the complex interrelationships of soil organic carbon fractions with land use/land cover types and landform attributes in a montane ecosystem. J Soils Sediments 15:1039–1054. doi:10.1007/s11368-015-1088-4

    Article  CAS  Google Scholar 

  • Gazulla MF, Rodrigo M, Orduña M, Gómez CM (2012) Determination of carbon, hydrogen, nitrogen and sulfur in geological materials using elemental analysers. Geostand Geoanal Res 36:201–217. doi:10.1111/j.1751-908X.2011.00140.x

    Article  CAS  Google Scholar 

  • Goh KM, Totua SS (2004) Effects of organic and plant residue quality and orchard management practices on decomposition rates of residues. Commun Soil Sci Plant Anal 35:441–460. doi:10.1081/CSS-120029724

    Article  CAS  Google Scholar 

  • Hairiah K, Noordwijk VM, Cadisch G (2000) Crop yield, C and N balance of three types of cropping systems on an Ultisol in Northern Lampung. Neth J Agric Sci 48:3–17. doi:10.1016/S1573-5214(00)80001-9

    CAS  Google Scholar 

  • Jia GM, Xi Y, Zhang BL, Chen FQ (2014) Soil labile organic carbon and microbial activity changes with age in citrus (Citrus sinensis Osb.) plantations in China. Aust For 77:153–158. doi:10.1080/00049158.2014.897921

    Article  Google Scholar 

  • Keiluweit M, Bougoure JJ, Nico PS, Pettridge J, Weber PK, Kleber M (2015) Mineral protection of soil carbon counteracted by root exudates. Nat Clim Chang 5:588–595. doi:10.1038/nclimate2580

    Article  CAS  Google Scholar 

  • Liu YJ, Ni JP, Zhang Y, Liu ZT (2015) Analysis of effects on water interception and nutrient conservation from citrus intercropping in hilly area of Chongqing City. J Soil Water Conserv 29:226–230. (In Chinese. doi:10.13870/j.cnki.stbcxb.2015.01.043

    Google Scholar 

  • Lorenz K, Lal R (2014) Soil organic carbon sequestration in agroforestry systems. A review Agronomy for Sustainable Development 34:443–454. doi:10.1007/s13593-014-0212-y

    Article  CAS  Google Scholar 

  • Manna MC, Swarup A, Wanjari RH, Mishra B, Shahi DK (2007) Long-term fertilization, manure and liming effects on soil organic matter and crop yields. Soil Tillage Res 94:397–409. doi:10.1016/j.still.2006.08.013

    Article  Google Scholar 

  • Mubarak AR, Rosenani AB (2013) Soil organic matter fractions in humid tropics as influenced by application of crop residues. Commun Soil Sci Plant Anal 34:933–943. doi:10.1081/CSS-120019100

    Article  Google Scholar 

  • Ni JZ, Xu JM, Xie ZM, Wang DJ (2004) Changes of labile organic carbon fractions in soils under different rotation systems. Pedosphere 1:103–109

    Google Scholar 

  • Oades JM (1988) The retention of organic matter in soils. Biogeochemistry 5:35–70

    Article  CAS  Google Scholar 

  • Schulz MJ, Thormann MN (2005) Functional and taxonomic diversity of saprobic filamentous fungi from Typha latifolia from central Alberta, Canada. Wetlands 25:675–684. doi:10.1672/0277-5212(2005)025[0675:FATDOS]2.0.CO;2

    Article  Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241:155–176. doi:10.1023/A:1016125726789

    Article  CAS  Google Scholar 

  • Smith J, Smith P, Monaghan R, MacDonald AJ (2002) When is a measured soil organic matter fraction equivalent to a model pool? Eur J Soil Sci 53:405–416. doi:10.1046/j.1365-2389.2002.00458.x

    Article  CAS  Google Scholar 

  • Song Z, Jia L, Xu F, Meng F, Deng P, Fan K, Liu XN (2009) Characteristics of se-enriched mycelia by Stropharia rugoso-annulata and its antioxidant activities in vivo. Biol Trace Elem Res 131:81–89. doi:10.1007/s12011-009-8343-8

    Article  CAS  Google Scholar 

  • Song B, Niu SL, Li LH, Zhang LX, Yu GR (2014) Soil carbon fractions in grasslands respond differently to various levels of nitrogen enrichments. Plant Soil 384:401–412. doi:10.1007/s11104-014-2219-1

    Article  CAS  Google Scholar 

  • Sullivan P (2003) Intercropping principles and production practices. University of Arkansas, Fayetteville

    Google Scholar 

  • Tan Y, Yao F (2006) Three Gorges Project: effects of resettlement on the environment in the reservoir area and countermeasures. Popul Environ 27:351–371. doi:10.1007/s11111-006-0027-0

    Article  Google Scholar 

  • Tong X, Xu M, Wang X, Bhattacharyya R, Zhang W, Cong R (2014) Long-term fertilization effects on organic carbon fractions in a red soil of China. Catena 113:251–259. doi:10.1016/j.catena.2013.08.005

    Article  CAS  Google Scholar 

  • Vandermeer JH (1989) The ecology of intercropping systems. J Appl Ecol 26:185–188. doi:10.2307/2403737

    Google Scholar 

  • Wotherspoon A, Thevathasan NV, Gordon AM, Voroney RP (2014) Carbon sequestration potential of five tree species in a 25-year-old temperate tree-based intercropping system in southern Ontario, Canada. Agrofor Syst 88:631–643. doi:10.1007/s10457-014-9719-0

    Article  Google Scholar 

  • Wu J, Suzuki T, Choi JH, Yasuda N, Noguchi K, Hirai H, Kawagishi H (2013) An unusual sterol from the mushroom Stropharia rugoso-annulata. Tetrahedron Lett 54:4900–4902. doi:10.1016/j.tetlet.2013.06.142

    Article  CAS  Google Scholar 

  • Zhang Y, Liu YJ, Ni JP (2015) Effects of citrus tree/Strophaia mushrooms intercropping on “purple soil” labile organic carbon in the Three Gorges Reservoir region. Acta Prataculturae Sinica 24:53–65. (In Chinese. doi:10.11686/cyxb20150507

    CAS  Google Scholar 

  • Zhou G, Liu S, Li Z, Zhang D, Tang X, Zhou C, Yan JH, Mo JM (2006) Old-growth forests can accumulate carbon in soils. Science 314:1417. doi:10.1126/science.1130168

    Article  CAS  Google Scholar 

  • Zhou B, Jia L, Meng FY, Song Z, Liu XN, Deng P, Fan K (2010) Statistical optimization of cultivation conditions for exopolysacchride production and mycelia growth by Stropharia rugoso-annulata. Ann Microbiol 60:89–96. doi:10.1007/s13213-009-0006-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Nature Science Foundation of China (grant no. 41371275), the Fundamental Research Funds for the Central Universities of China (grant no. XDJK2016E161) and the Science and Technology Innovation Project of Chongqing (grant no. CYB2015054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deti Xie.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ni, J., Yang, J. et al. Citrus stand ages regulate the fraction alteration of soil organic carbon under a citrus/Stropharua rugodo-annulata intercropping system in the Three Gorges Reservoir area, China. Environ Sci Pollut Res 24, 18363–18371 (2017). https://doi.org/10.1007/s11356-017-9269-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9269-x

Keywords

Navigation