Skip to main content
Log in

The effects of experimentally supplied lead nitrate on three common Mediterranean moss species

  • (E)merging directions on air pollution and climate change research in Mediterranean Basin ecosystems
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We assess here, through an experimental simulation using lead nitrate, the response to lead deposition of three common Mediterranean bryophyte species in the family Pottiaceae. Five concentrations of lead nitrate (from 0 to 10−3 M) were sprayed for 4 months on plants belonging to Tortula muralis (reported as toxitolerant), Syntrichia ruralis (medium-tolerant), and Tortula subulata (less tolerant). The three species showed a remarkably high tolerance to lead nitrate, with a low incidence of damage even at concentrations as high as 10−4 M. The maximum concentration (10−3 M), although resulting eventually in serious damages in the gametophyte of the three species (high mortality rates in S. ruralis and T. subulata, or a significant percentage of damaged tissue in T. muralis), did not prevent the production of sporophytes in the two species with fertile samples (T. muralis and T. subulata). Growth parameters show limited value as bioindicators of lead deposition, as they only show clear effects at very high concentrations. Besides, we identified the existence of a lead exclusion strategy mediated by mucilage using histochemical analyses and scanning electron microscopy combined with energy-dispersive X-ray spectroscopy. This mechanism can hamper the usefulness of these mosses in quantitative estimation of lead deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aboal JR, Fernández JA, Boquete T, Carballeira A (2010) Is it possible to estimate atmospheric deposition of heavy metals by analysis of terrestrial mosses? Sci Total Environ 408:6291–6297. doi:10.1016/j.scitotenv.2010.09.013

    Article  CAS  Google Scholar 

  • Baranowska-Morek A, Wierzbicka M (2004) Localization of lead in root tip of Dianthus carthusianorum. Acta Biol Cracov Ser Bot 46:45–56

    Google Scholar 

  • Basile A, Giordano S, Cafiero G et al (1994) Tissue and cell localization of experimentally-supplied lead in Funaria hygrometrica Hedw. using X-ray SEM and TEM microanalysis. J Bryol 18:69–81. doi:10.1179/jbr.1994.18.1.69

    Article  Google Scholar 

  • Basile A, Giordano S, Spagnuolo V et al (1995) Effect of lead and colchicine on morphogenesis in protonemata of the moss Funaria hygrometrica. Ann Bot 76:597–606. doi:10.1006/anbo.1995.1137

    Article  CAS  Google Scholar 

  • Basile A, Cogoni AE, Bassi P et al (2001) Accumulation of Pb and Zn in gametophytes and sporophytes of the moss Funaria hygrometrica (Funariales). Ann Bot 87:537–543. doi:10.1006/anbo.2001.1368

    Article  CAS  Google Scholar 

  • Basile A, Sorbo S, Aprile G et al (2009) Heavy metal deposition in the Italian “triangle of death” determined with the moss Scorpiurum circinatum. Environ Pollut 157:2255–2260. doi:10.1016/j.envpol.2009.04.001

    Article  CAS  Google Scholar 

  • Basile A, Sorbo S, Conte B et al (2013) Ultrastructural changes and heat shock proteins 70 induced by atmospheric pollution are similar to the effects observed under in vitro heavy metals stress in Conocephalum conicum (Marchantiales – Bryophyta). Environ Pollut 182:209–216. doi:10.1016/j.envpol.2013.07.014

    Article  CAS  Google Scholar 

  • Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59. doi:10.1890/08-1140.1

    Article  CAS  Google Scholar 

  • Brown DH, Bates JW (1972) Uptake of lead by two populations of Grimmia donniana. J Bryol 7:187–193. doi:10.1179/jbr.1972.7.2.187

    Article  Google Scholar 

  • Carginale V, Sorbo S, Capasso C et al (2004) Accumulation, localisation, and toxic effects of cadmium in the liverwort Lunularia cruciata. Protoplasma 223:53–61. doi:10.1007/s00709-003-0028-0

    Article  CAS  Google Scholar 

  • Cole KM, Park CM, Reid PE, Sheath RG (1985) Comparative studies on the cell walls of sexual and asexual Bangia atropurpurea (Rhodophyta). I. Histochemistry of polysaccharides 1. J Phycol 21:585–592. doi:10.1111/j.0022-3646.1985.00585.x

    Article  Google Scholar 

  • Colzi I, Pignattelli S, Giorni E et al (2015) Linking root traits to copper exclusion mechanisms in Silene paradoxa. Plant Soil 390:1–15. doi:10.1007/s11104-014-2375-3

    Article  CAS  Google Scholar 

  • Dierβen K (2001) Distribution, ecological amplitude and phytosociological characterization of European bryophytes. J. Cramer, Berlin & Stuttgart

    Google Scholar 

  • Fernández JA, Carballeira A (2000) Differences in the responses of native and transplanted mosses to atmospheric pollution: a possible role of selenium. Environ Pollut 110:73–78. doi:10.1016/S0269-7491(99)00278-X

    Article  Google Scholar 

  • Fernández JA, Aboal JR, Carballeira A (2000) Use of native and transplanted mosses as complementary techniques for biomonitoring mercury around an industrial facility. Sci Total Environ 256:151–161. doi:10.1016/S0048-9697(00)00478-2

    Article  Google Scholar 

  • Fernández JA, Boquete MT, Carballeira A, Aboal JR (2015) A critical review of protocols for moss biomonitoring of atmospheric deposition: sampling and sample preparation. Sci Total Environ 517:132–150. doi:10.1016/j.scitotenv.2015.02.050

    Article  CAS  Google Scholar 

  • Gerdol R, Bragazza L, Marchesini R et al (2002) Use of moss (Tortula muralis Hedw.) for monitoring organic and inorganic air pollution in urban and rural sites in northern Italy. Atmos Environ 36:4069–4075. doi:10.1016/S1352-2310(02)00298-4

    Article  CAS  Google Scholar 

  • Giordano S, Sorbo S, Adamo P et al (2004) Biodiversity and trace element content of epiphytic bryophytes in urban and extraurban sites of southern Italy. Plant Ecol 170:1–14. doi:10.1023/B:VEGE.0000019025.36121.5d

    Article  Google Scholar 

  • Guerra J, Cano MJ, Ros RM (eds) (2006) Flora Briofitica Ibérica, Vol. III. Pottiales, Encalyptales. Universidad de Murcia - Sociedad Española de Briología, Murcia

  • Gullvåg BM, Skaar H, Ophus EM (1974) An ultrastructural study of lead accumulation within leaves of Rhytidiadelphus squarrosus (Hedw.) Warnst. A comparison between experimental and environmental poisoning. J Bryol 8:117–122. doi:10.1179/jbr.1974.8.1.117

    Article  Google Scholar 

  • Harmens H, Norris DA, Steinnes E et al (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environ Pollut 158:3144–3156. doi:10.1016/j.envpol.2010.06.039

    Article  CAS  Google Scholar 

  • Harmens H, Norris DA, Mills GE (2013) Heavy metals and nitrogen in mosses: spatial patterns in 2010/2011 and long-term temporal trends in Europe. http://icpvegetation.ceh.ac.uk/publications/documents/Finalmossreport2010-11forweb.pdf. Accessed 7 Nov 2016

  • Harmens H, Norris DA, Sharps K et al (2015a) Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ Pollut 200:93–104. doi:10.1016/j.envpol.2015.01.036

    Article  CAS  Google Scholar 

  • Harmens H, Schröder W, Zechmeister HG et al (2015b) Comments on J.A. Fernandez, M.T. Boquete, A. Carballeira, J.R. Aboal (2015). A critical review of protocols for moss biomonitoring of atmospheric deposition: sampling and sample preparation. Science of the Total environment 517:132–150. Sci Total Environ 538:1024–1026. doi:10.1016/j.scitotenv.2015.07.070

  • Hill MO, Preston CD, Bosanquet SDS, Roy DB (2007) BRYOATT: attributes of British and Irish mosses, liverworts and hornworts. Centre for Ecology and Hydrology, Cambridge

    Google Scholar 

  • Jesus VAM, Araújo EF, Neves AA et al (2016) Ratio of seeds and sodium hypochlorite solution on the germination process of papaya seeds. J Seed Sci 38:57–61. doi:10.1590/2317-1545v38n1151150

    Article  Google Scholar 

  • Kremer C, Pettolino F, Bacic A, Drinnan A (2004) Distribution of cell wall components in Sphagnum hyaline cells and in liverwort and hornwort elaters. Planta 219:1023–1035. doi:10.1007/s00425-004-1308-4

    Article  CAS  Google Scholar 

  • Krzesłowska M, Woźny A (1996) Lead uptake, localization and changes in cell ultrastructure of Funaria hygrometrica protonemata. Biol Plant 38:253. doi:10.1007/BF02873855

    Article  Google Scholar 

  • Olsson BA, Kellner O (2006) Long-term effects of nitrogen fertilization on ground vegetation in coniferous forests. For Ecol Manag 237:458–470. doi:10.1016/j.foreco.2006.09.068

    Article  Google Scholar 

  • Onianwa PC (2001) Monitoring atmospheric metal pollution: a review of the use of mosses as indicators. Environ Monit Assess 71:13–50. doi:10.1023/A:1011660727479

    Article  CAS  Google Scholar 

  • Ötvös E, Pázmándi T, Tuba Z (2003) First national survey of atmospheric heavy metal deposition in Hungary by the analysis of mosses. Sci Total Environ 309:151–160. doi:10.1016/S0048-9697(02)00681-2

    Article  CAS  Google Scholar 

  • Pourrut B, Shahid M, Dumat C et al (2011) Lead uptake, toxicity, and detoxification in plants. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology volume 213. Springer, New York, pp 113–136

    Chapter  Google Scholar 

  • Qiu A, Xing W, Scheckel Kg, Cheng Y, Zhao Z, Ruan X, Li L (2016) Temporal and seasonal variations of As, Cd and Pb atmospheric deposition flux in the vicinity of lead smelters in Jiyuan, China. Atmospheric Pollution Research 7(1):170–179

  • R Development Core Team (2011) R: A Language and Environment for Statistical Computing. Vienna, Austria

  • Sabovljevic M, Grdovic S (2009) Bryophyte diversity within urban areas: case study of the city of Belgrade (Serbia). Int J Bot 5:85–92. doi:10.3923/ijb.2009.85.92

    Article  Google Scholar 

  • Seregin IV, Ivanov VB (1997) Histochemical investigation of cadmium and lead distribution in plants. Russ J Plant Physiol 44:791–796. doi:10.1023/B:RUPP.0000035747.42399.84

    Article  CAS  Google Scholar 

  • Shaw J (1989) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Florida

    Google Scholar 

  • Soria Tosantos A (2002) Ensayo para una caracterización de briófitas como indicadores de urbanización mediante el estudio de la brioflora de ciudades españolas. Ph.D.Dissertation, Universidad Complutense de Madrid

  • Tabors G, Brumelis G, Lapina L, Pospelova G, Nikodemus O (2004) Changes in element concentrations in moss segments after cross-transplanting between a polluted and non-polluted site. J Atmos Chem 49:191–197. doi:10.1007/s10874-004-1224-9

    Article  CAS  Google Scholar 

  • Wiklund K, Rydin H (2004) Ecophysiological constraints on spore establishment in bryophytes. Funct Ecol 18:907–913. doi:10.1111/j.0269-8463.2004.00906.x

    Article  Google Scholar 

  • Zechmeister HG, Dirnböck T, Hülber K, Mirtl M (2007) Assessing airborne pollution effects on bryophytes – lessons learned through long-term integrated monitoring in Austria. Environ Pollut 147:696–705. doi:10.1016/j.envpol.2006.09.008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Esperanza Salvador and Enrique Rodríguez (SEM-EDX Laboratory, SIdI, UAM), the collectors of Cephaloziella rubella, and the two anonymous reviewers for their constructive suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagore G. Medina.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(PDF 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cogolludo, J., Estébanez, B. & Medina, N.G. The effects of experimentally supplied lead nitrate on three common Mediterranean moss species. Environ Sci Pollut Res 24, 26194–26205 (2017). https://doi.org/10.1007/s11356-017-9220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9220-1

Keywords

Navigation