Skip to main content
Log in

Copper Content and Resistance Mechanisms in the Terrestrial Moss Ptychostomum capillare: A Case Study in an Abandoned Copper Mine in Central Spain

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

We present a case study on the tissue absorption of copper of a widely distributed moss species, Ptychostomum capillare in the polluted soil of an abandoned copper mine in central Spain. We studied the soil properties in a copper soil pollution gradient and sampled the moss tufts growing on them in four plots with contrasted soil copper levels. We determined the copper content in the soil and in the moss tissues. On these moss samples, we also performed histochemical tests and X-ray dispersive spectrometry coupled with scanning electron microscopy (SEM-EDX), both in untreated shoots and in samples where surface waxes were removed. We checked the behavior of this species using a metallophillous moss, Scopelophila cataractae, for comparative purposes. Copper contents in P. capillare seem to depend more on available, rather than total soil copper contents. Our results indicate that this moss is able to concentrate 12-fold the available soil copper in soil with low available copper content, whereas in the most polluted soil the concentration of Cu in the moss was only half those levels. Both histochemical and SEM-EDX tests show no surface copper in the mosses from the least polluted plot, whereas in samples from the soil with highest copper content, the removal of surface waxes also reduces or removes copper from the moss shoots. Our observations point at a mixed strategy in P. capillare in this copper mine, with metal accumulation behavior in the lowest Cu plot, and an exclusion mechanism involving wax-like substances acting as a barrier in the most polluted plots. These distortions impede the estimation of environmental levels and thus compromise the value of this moss in biomonitoring. We highlight the need of extending these studies to other moss species, especially those used in biomonitoring programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aboal JR, Fernández JA, Boquete T, Carballeira A (2010) Is it possible to estimate atmospheric deposition of heavy metals by analysis of terrestrial mosses? Sci Total Environ 408(24):6291–6297. https://doi.org/10.1016/j.scitotenv.2010.09.013

    Article  CAS  Google Scholar 

  • Aboal JR, Boquete MT, Carballeira A, Casanova A, Debén S, Fernández JA (2017) Quantification of the overall measurement uncertainty associated with the passive moss biomonitoring technique: sample collection and processing. Environ Pollut 224:235–242. https://doi.org/10.1016/j.envpol.2017.01.084

    Article  CAS  Google Scholar 

  • Alloway BJ (ed) (2013) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht

    Google Scholar 

  • Bancroft JD, Stevens A (1982) Theory and practice of histological techniques, 2nd edn. Churchill Livingstone, London

    Google Scholar 

  • BOCM (2006) Order 2770/2006, 11 Aug, Regional Ministry of Environment and Territory of the Government of Madrid, establishing generic reference levels of heavy metals and other trace elements in contaminated soils of the Community of Madrid BOCM 204 (28 Aug 2006), pp 29–30 (in Spanish)

  • Borkert CM, Cox FR, Tucker MR (1998) Zinc and copper toxicity in peanut, soybean, rice and corn in soil mixtures. Commun Soil Sci Plat Anal 29(192):2991–3005. https://doi.org/10.1080/00103629809370171

    Article  CAS  Google Scholar 

  • Bravo-Gómez ME, Espinoza-Guillén A, Castillo S, Barba N (2015) Metalochaperonas: escoltas personales en el tráfico intracelular de iones metálicos. Educación Química 26(1):26–37. https://doi.org/10.1016/S0187-893X(15)72095-1

    Article  Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen-Total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin, pp 595–624

  • Broadhurst CL, Chaney RL, Angle JS, Erbe EF, Maugel TK (2004) Nickel localization and response to increasing Ni soil levels in leaves of the Ni hyperaccumulator Alyssum murale. Plant Soil 265(1):225–242. https://doi.org/10.1007/s11104-005-0974-8

    Article  CAS  Google Scholar 

  • Brown DH, Wells JM (1990) Physiological effects of heavy metals on the moss Rhytidiadelphus squarrosus. Ann Bot 66(6):641–647. https://doi.org/10.1093/oxfordjournals.aob.a088078

    Article  CAS  Google Scholar 

  • Buch H (1945) Über die Wasser- und Mineralstoffversorgung der Moose (I). Comm Biol Soc Sci Fenn 9(16):1–44

    Google Scholar 

  • Chardonnens AN, Wilma M, Vellinga S, Schat H, Verkleij JA, Ernst WH (1999) Allocation patterns of zinc and cadmium in heavy metal tolerant and sensitive Silene vulgaris. J Plant Physiol 155(6):778–787. https://doi.org/10.1016/S0176-1617(99)80096-0

    Article  CAS  Google Scholar 

  • Chen H, Teng Y, Lu S, Wang Y, Wang J (2015) Contamination features and health risk of soil heavy metals in China. Sci Total Environ 512:143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025

    Article  CAS  Google Scholar 

  • Cheng S (2003) Effects of heavy metals on plants and resistance mechanisms. Environ Sci Pollut Res 10(4):256–264. https://doi.org/10.1065/espr2002.11.141.2

    Article  CAS  Google Scholar 

  • Chettri MK, Sawidis T, Zachariadis GA, Stratis JA (1997) Uptake of heavy metals by living and dead Cladonia thalli. Environ Exp Bot 37(1):39–52. https://doi.org/10.1016/S0098-8472(96)01023-4

    Article  CAS  Google Scholar 

  • Cogolludo J, Estébanez B, Medina NG (2017) The effects of experimentally supplied lead nitrate on three common Mediterranean moss species. Environ Sci Pollut Res 24:26194–26205. https://doi.org/10.1007/s11356-017-9220-1

    Article  CAS  Google Scholar 

  • Colzi I, Pignattelli S, Giorni E, Papini A, Gonnelli C (2015) Linking root traits to copper exclusion mechanisms in Silene paradoxa L. (Caryophyllaceae). Plant Soil 390:1–15. https://doi.org/10.1007/s11104-014-2375-3

    Article  CAS  Google Scholar 

  • Cooke JA, Johnson MS (2002) Ecological restoration of land with particular reference to the mining of metals and industrial minerals: a review of theory and practice. Environ Rev 10:41–71. https://doi.org/10.1139/a01-014

    Article  CAS  Google Scholar 

  • Cornu J-Y, Huguenot D, Jezéquel K, Lollier M, Lebau T (2017) Bioremediation of copper-contaminated soils by bacteria. World J Microbiol Biotechnol 33:26. https://doi.org/10.1007/s11274-016-2191-4

    Article  CAS  Google Scholar 

  • Dierßen K (2001) Distribution, ecological amplitude and phytosociological characterization of European bryophytes. Cramer in der Gebr, Berlin

    Google Scholar 

  • Ernst WH (2006) Evolution of metal tolerance in higher plants. For Snow Landsc Res 80(3):251–274

    Google Scholar 

  • Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189(1):147–163. https://doi.org/10.1016/S0300-483X(03)00159-8

    Article  CAS  Google Scholar 

  • Giller KE, Witter E, Mcgrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem 30(10–11):1389–1414. https://doi.org/10.1016/S0038-0717(97)00270-8

    Article  CAS  Google Scholar 

  • Glime JM (2015) Water relations: leaf strategies—cuticles and waxes. In: Glime JM (ed) Bryophyte ecology, vol 1: Physiological ecology. Michigan Technological University and the International Association of Bryologists, ebook, Ch. 7–4b

  • Guschina IA, Harwood JL (2002) Lipid metabolism in the moss Rhytidiadelphus squarrosus (Hedw.) Warnst. from lead-contaminated and non-contaminated populations. J Exp Bot 53(368):455–463. https://doi.org/10.1093/jexbot/53.368.455

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11. https://doi.org/10.1093/jexbot/53.366.1

    Article  CAS  Google Scholar 

  • Harmens H, Norris DA, Steinnes E, Kubin E, Piispanen J, Alber R, Aleksiayenak Y, Blum O, Coskun M, Dam M, De Temmerman L, Fernandez JA, Frolova M, Frontasyeva M, Gonzalez-Miqueo L, Grodzinska K, Jeran Z, Korzekwa S, Krmar M, Kvietkus K, Leblond S, Liiv S, Magnusson SH, Mankovska B, Pesch R, Ruhling Ä, Santamaria JM, Schroder W, Spiric Z, Suchara I, Thöni L, Urumov V, Yurukova L, Zechmeister HG (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environ Pollut 158(10):3144–3156. https://doi.org/10.1016/j.envpol.2010.06.039

    Article  CAS  Google Scholar 

  • Harmens H, Norris DA, Sharps K, Mills G, Alber R, Aleksiayenak YB, Cucu-Man SM, Dam M, De Temmerman L, Ene A, Fernández JA, Martínez-Abaigar J, Frontasyeva M, Godzik B, Jeran Z, Lazo P, Leblond S, Liiv S, Magnússon SH, Maňkovská B, Pihl Karlsson G, Piispanen J, Poikolainen J, Santamaria JM, Skudnik M, Spiric Z, Stafilov T, Steinnes E, Stihi C, Suchara I, Thöni L, Todoran R, Yurukova L, Zechmeister HG (2015) Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ Pollut 200:93–104. https://doi.org/10.1016/j.envpol.2015.01.036

    Article  CAS  Google Scholar 

  • ISO (1995) Soil quality. Extraction of trace elements soluble in aqua regia. ISO11466. International Organization for Standardization, confirmed in 2016

  • Izquieta-Rojano S, Elustondo D, Ederra A, Lasheras E, Santamaría C, Santamaría JM (2016) Pleurochaete squarrosa (Brid.) Lindb. as an alternative moss species for biomonitoring surveys of heavy metal, nitrogen deposition and δ 15 N signatures in a Mediterranean area. Ecol Indic 60:1221–1228. https://doi.org/10.1016/j.ecolind.2015.09.023

    Article  CAS  Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. Principles and practice. Freeman, San Francisco

    Google Scholar 

  • Jordá L (2008) Metal mining in Madrid province: mining heritage and promotion of the underground space. PhD Thesis. Universidad Politécnica de Madrid, Madrid (in Spanish)

  • Jules ES, Shaw AJ (1994) Adaptation to metal-contaminated soils in populations of the moss, Ceratodon purpureus: vegetative growth and reproductive expression. Am J Bot 81(6):791–797

    Article  Google Scholar 

  • Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Florida

    Google Scholar 

  • Konno H, Nakashima S, Katoh K (2010) Metal-tolerant moss Scopelophila cataractae accumulates copper in the cell wall pectin of the protonema. J Plant Physiol 167(5):358–364. https://doi.org/10.1016/j.jplph.2009.09.011

    Article  CAS  Google Scholar 

  • Lepp NW, Salmon D (1999) A field study of the ecotoxicology of copper to bryophytes. Environ Pollut 106(2):153–156. https://doi.org/10.1016/S0269-7491(99)00080-9

    Article  CAS  Google Scholar 

  • Levitt J (1972) Responses of plants to environmental stresses. Academic Press, New York

    Google Scholar 

  • Mårtensson O, Berggren A (1954) Some notes on the ecology of the “copper mosses”. Oikos 5:99–100

    Article  Google Scholar 

  • Mehlich A (1984) Mehlich-3 soil test extractant: a modification of Mehlich 2 extractant. Commun Soil Sci Plant Anal 15:1409–1416. https://doi.org/10.1080/00103628409367568

    Article  CAS  Google Scholar 

  • Morse N, Walter MT, Osmond D, Hunt W (2016) Roadside soils show low plant available zinc and copper concentrations. Environ Pollut 209:30–37. https://doi.org/10.1016/j.envpol.2015.11.011

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2: Chemical and microbiological properties. American Society of Agronomy Soil Science Society of America, Madison, pp 539–579

    Google Scholar 

  • Onianwa PC (2001) Monitoring atmospheric metal pollution: a review of the use of mosses as indicators. Environ Monit Assess 71:13–50

    Article  CAS  Google Scholar 

  • Pais I, Jones B Jr (1997) The handbook of trace elements. St. Lucie Press, Boca Raton

    Google Scholar 

  • Persson H (1956) Studies in "copper mosses.". J Hattori Bot Lab 17:1–18

    Google Scholar 

  • Proctor MCF (1979) Surface wax on the leaves of some mosses. J Bryol 10(4):531–538. https://doi.org/10.1179/jbr.1979.10.4.531

    Article  Google Scholar 

  • Psaras GK, Constantinidis TH, Cotsopoulos B, Manetas Y (2000) Relative abundance of nickel in the leaf epidermis of eight hyperaccumulators: evidence that the metal is excluded from both guard cells and trichomes. Ann Bot 86(1):73–78. https://doi.org/10.1006/anbo.2000.1161

    Article  CAS  Google Scholar 

  • Satake K (2013) The mystery of copper bryophytes (in Japanese). Iseb, Tsukuba

    Google Scholar 

  • Satake K, Shibata K, Nishikawa M, Fuwa K (1988) Copper accumulation and location in the moss Scopelophila cataractae. J Bryol 15(2):353–376. https://doi.org/10.1179/jbr.1988.15.2.353

    Article  Google Scholar 

  • Satake K, Mishikawa M, Shibata (1990) A copper-rich protonemaI colony of the moss Scopelophila cataractae. J Bryol 16(1):109–116. https://doi.org/10.1179/jbr.1990.16.1.109

    Article  Google Scholar 

  • Schröder W, Holy M, Pesch R, Harmens H, Ilyin I, Steinnes E, Alber R, Aleksiayenak Y, Blum O, Coşkun M, Dam M, De Temmerman L, Frolova M, Frontasyeva M, Gonzalez Miqueo L, Grodzińska K, Jeran Z, Korzekwa S, Krmar M, Kubin E, Kvietkus K, Leblond S, Liiv S, Magnússon S, Maňkovská B, Piispanen J, Rühling A, Santamaria J, Spiric Z, Suchara I, Thöni L, Urumov V, Yurukova L, Zechmeister HG (2010) Are cadmium, lead and mercury concentrations in mosses across Europe primarily determined by atmospheric deposition of these metals? J Soils Sediment 10(8):1572–1584. https://doi.org/10.1007/s11368-010-0254-y

    Article  CAS  Google Scholar 

  • Schröder W, Pesch R, Schönrock S, Harmens H, Mills G, Fagerli H (2014) Mapping correlations between nitrogen concentrations in atmospheric deposition and mosses for natural landscapes in Europe. Ecol Indic 36:563–571. https://doi.org/10.1016/j.ecolind.2013.09.013

    Article  CAS  Google Scholar 

  • Schulten A, Krämer U (2017) Interactions between copper homeostasis and metabolism in plants. In: Cánovas F, Lüttge U, Matyssek R (eds) Progress in Botany. Springer, Cham, pp 111–146

    Google Scholar 

  • Shakya K, Chettri MK, Sawadis T (2008) Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses. Arch Environ Contam Toxicol 54(3):412–442. https://doi.org/10.1007/s00244-007-9060-y

    Article  CAS  Google Scholar 

  • Shaw AJ (1993) Population biology of the rare copper moss, Scopelophila cataractae. Am J Bot 80(9):1034–1041

    Article  Google Scholar 

  • Shaw AJ, Schneider RE (1995) Genetic biogeography of the rare “copper moss”, Mielichhoferia elongata (Bryaceae). Am J Bot 82(1):8–17

    Article  Google Scholar 

  • Shaw J, Antonovics J, Anderson LE (1987) Inter-and intraspecific variation of mosses in tolerance to copper and zinc. Evolution 41(6):1312–1325

    Article  CAS  Google Scholar 

  • Vukojević V, Sabovljević M, Jovanović S (2005) Mosses accumulate heavy metals from the substrata of coal ash. Arch Biol Sci 57(2):101–106. https://doi.org/10.2298/ABS0502101V

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank Esperanza Salvador and Enrique Rodríguez (SEM-EDX Laboratory, SIdI, UAM) and Dr. Carlos García-Delgado (AAS Laboratory, Department of Agricultural Chemistry, UAM) for their helpfulness and kind assistance. They also thank three anonymous reviewers for their careful revision and their insights, which have helped significantly to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. J. Elvira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elvira, N.J., Medina, N.G., Leo, M. et al. Copper Content and Resistance Mechanisms in the Terrestrial Moss Ptychostomum capillare: A Case Study in an Abandoned Copper Mine in Central Spain. Arch Environ Contam Toxicol 79, 49–59 (2020). https://doi.org/10.1007/s00244-020-00739-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-020-00739-6

Navigation