Skip to main content
Log in

The effects of cadmium pulse dosing on physiological traits and growth of the submerged macrophyte Vallisneria spinulosa and phytoplankton biomass: a mesocosm study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pulse inputs of heavy metals are expected to increase with a higher frequency of extreme climate events (heavy rain), leading to stronger erosion of contaminated and fertilized farmland soils to freshwaters, with potentially adverse effects on lake ecosystems. We conducted a 5-month mesocosm study to elucidate the responses of the submerged macrophyte Vallisneria spinulosa and phytoplankton to four different doses of cadmium (Cd): 0 (control), 0.05, 0.5, and 5 g m−2 (CK, I, II, and III, respectively) under mesotrophic conditions. We found that total phosphorus concentrations were larger in the three Cd pulse treatments, whereas total nitrogen concentrations did not differ among the four treatments. The contents of chlorophyll a and soluble sugar in macrophyte leaves decreased in III, and total biomass, ramet number, plant height, and total stolon length of macrophytes were lower in both II and III. In contrast, abundances of the three main phytoplankton taxa—Cyanophyta, Chlorophyta, and Bacillariophyta—did not differ among treatments. Total phytoplankton biomass was, however, marginally lower in CK than in the Cd treatments. We conclude that exposure to strong Cd pulses led to significantly reduced growth of macrophytes, while no obvious effect appeared for phytoplankton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andresen E, Mattusch J, Wellenreuther G, Thomas G, Arroyo Abad U, Kupper H (2013) Different strategies of cadmium detoxification in the submerged macrophyte Ceratophyllum demersum L. Metallomics 5:1377–1386. doi:10.1039/C3MT00088E

    Article  CAS  Google Scholar 

  • Andresen E et al (2016) Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant Ceratophyllum demersum. New Phytol 210:1244–1258. doi:10.1111/nph.13840

    Article  CAS  Google Scholar 

  • Brand LE, Sunda WG, Guillard RRL (1986) Reduction of marine phytoplankton reproduction rates by copper and cadmium. J Exp Mar Bio Ecol 96:225–250. doi:10.1016/0022-0981(86)90205-4

    Article  CAS  Google Scholar 

  • Cao T, Xie P, Li ZQ, Ni LY, Zhang M, Xu J (2009) Physiological stress of high NH4 + concentration in water column on the submersed macrophyte Vallisneria natans L. Bull Environ Contam Toxicol 82:296–299. doi:10.1007/s00128-008-9531-5

    Article  CAS  Google Scholar 

  • Communique of the National Soil Pollution Survey (2014) URL: http://www.mlr.gov.cn/xwdt/jrxw/201404/t20140417_1312998.htm

  • Cullen JT, Maldonado MT (2013) Biogeochemistry of cadmium and its release to the environment. In: Sigel A, Sigel H, Sigel RKO (eds) Cadmium: from toxicity to essentiality. Springer Netherlands, Dordrecht, pp 31–62. doi:10.1007/978-94-007-5179-8_2

    Chapter  Google Scholar 

  • Dalla Vecchia F, Rocca NL, Moro I, De Faveri S, Andreoli C, Rascio N (2005) Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci 168:329–338. doi:10.1016/j.plantsci.2004.07.025

    Article  CAS  Google Scholar 

  • Deng G, Li M, Li H, Yin LY, Li W (2014) Exposure to cadmium causes declines in growth and photosynthesis in the endangered aquatic fern (Ceratopteris pteridoides). Aquat Bot 112:23–32. doi:10.1016/j.aquabot.2013.07.003

    Article  CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017

  • Duc Phuc H et al (2016) A 28-year observational study of urinary cadmium and β2-microglobulin concentrations in inhabitants in cadmium-polluted areas in Japan. J Appl Toxicol 36:1622–1628. doi:10.1002/jat.3327

    Article  Google Scholar 

  • Echeveste P, Agustí S, Tovar-Sánchez A (2012) Toxic thresholds of cadmium and lead to oceanic phytoplankton: cell size and ocean basin–dependent effects. Environ Toxicol Chem 31:1887–1894. doi:10.1002/etc.1893

    Article  CAS  Google Scholar 

  • Fathi AA, El-Shahed AM, Shoulkamy MA, Ibraheim HA, Abdel Rahman OM (2008) Response of Nile water phytoplankton to the toxicity of cobalt, copper and zinc. Research Journal of Environmental Toxicology 2:67–76

    Article  CAS  Google Scholar 

  • Field CB, Barros VR, Mach K, Mastrandrea M (2014) Climate change 2014: impacts, adaptation, and vulnerability. Contribution of working group II to the 5th assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

    Google Scholar 

  • Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, Groneberg DA (2006) The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol (London, England) 1:22. doi:10.1186/1745-6673-1-22

    Article  Google Scholar 

  • Huang XF, Chen WM, Cai QM (1999) Survey, observation and analysis of lake ecology. Standards Press of China, Beijing (in Chinese)

    Google Scholar 

  • Jain CK, Sharma MK (2002) Adsorption of cadmium on bed sediments of river Hindon: adsorption models and kinetics. Water Air Soil Pollut 137:1–19. doi:10.1023/a:1015530702297

    Article  CAS  Google Scholar 

  • Jensen A, Bro-Rasmussen F (1992) Environmental cadmium in Europe. In: Ware GW (ed) Reviews of environmental contamination and toxicology: continuation of residue reviews. Springer New York, New York, pp 101–181. doi:10.1007/978-1-4612-2890-5_3

    Chapter  Google Scholar 

  • Jeppesen E, Sondergaard M, Sondergaard M, Christofferson K (1998) The structuring role of submerged macrophytes in lakes. Ecological studies. Springer New York, New York

    Book  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2008) Effect of cadmium and lead on growth, biochemical parameters and uptake in Lemna polyrrhiza L. Plant Soil Environ 54:262–270

    CAS  Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants, 4th edn. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  • Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32. doi:10.1016/j.geoderma.2006.08.024

    Article  CAS  Google Scholar 

  • Küpper H, Kochian LV (2010) Transcriptional regulation of metal transport genes and mineral nutrition during acclimatization to cadmium and zinc in the cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol 185:114–129. doi:10.1111/j.1469-8137.2009.03051.x

    Article  Google Scholar 

  • Leung HM et al (2016) Monitoring and assessment of heavy metal contamination in a constructed wetland in Shaoguan (Guangdong Province, China): bioaccumulation of Pb, Zn, Cu and Cd in aquatic and terrestrial components. Environ Sci Pollut Res 24(10):9079–9088. doi:10.1007/s11356-016-6756-4

    Article  Google Scholar 

  • Li W, Zhang Z, Jeppesen E (2008) The response of Vallisneria spinulosa (Hydrocharitaceae) to different loadings of ammonia and nitrate at moderate phosphorus concentration: a mesocosm approach. Freshwat Biol 53:2321–2330. doi:10.1111/j.1365-2427.2008.02053.x

    Article  CAS  Google Scholar 

  • Miao AJ, Wang WX (2006) Cadmium toxicity to two marine phytoplankton under different nutrient conditions. Aquat Toxicol 78:114–126. doi:10.1016/j.aquatox.2006.02.008

    Article  CAS  Google Scholar 

  • Mishra S, Tripathi RD, Srivastava S, Dwivedi S, Trivedi PK, Dhankher OP, Khare A (2009) Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L. Bioresour Technol 100:2155–2161. doi:10.1016/j.biortech.2008.10.041

    Article  CAS  Google Scholar 

  • Mishra S, Wellenreuther G, Mattusch J, Stärk H-J, Küpper H (2013) Speciation and distribution of arsenic in the nonhyperaccumulator macrophyte Ceratophyllum demersum. Plant Physiol 163:1396–1408. doi:10.1104/pp.113.224303

    Article  CAS  Google Scholar 

  • Nawrot T et al (2006) Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol 7:119–126. doi:10.1016/S1470-2045(06)70545-9

    Article  CAS  Google Scholar 

  • Payne CD, Price NM (1999) Effects of cadmium toxicity on growth and elemental compostion of marine phytoplankton. J Phycol 35:293–302. doi:10.1046/j.1529-8817.1999.3520293.x

    Article  CAS  Google Scholar 

  • Prozialeck WC, Edwards JR (2012) Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions. J Pharmacol Exp Ther 343:2–12. doi:10.1124/jpet.110.166769

    Article  CAS  Google Scholar 

  • Ruangsomboon S, Wongrat L (2006) Bioaccumulation of cadmium in an experimental aquatic food chain involving phytoplankton (Chlorella vulgaris), zooplankton (Moina macrocopa), and the predatory catfish Clarias macrocephalus × C. gariepinus. Aquat Toxicol 78:15–20. doi:10.1016/j.aquatox.2006.01.015

    Article  CAS  Google Scholar 

  • Søndergaard M, Johansson LS, Lauridsen TL, Jørgensen TB, Liboriussen L, Jeppesen E (2010) Submerged macrophytes as indicators of the ecological quality of lakes. Freshwat Biol 55:893–908. doi:10.1111/j.1365-2427.2009.02331.x

    Article  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. In: Donald LS (ed) Advances in agronomy. Academic, Cambridge, pp 173–212. doi:10.1016/S0065-2113(08)60593-3

    Google Scholar 

  • Wang HJ, Wang HZ, Liang XM, Wu SK (2014) Total phosphorus thresholds for regime shifts are nearly equal in subtropical and temperate shallow lakes with moderate depths and areas. Freshwat Biol 59:1659–1671. doi:10.1111/fwb.12372

    Article  CAS  Google Scholar 

  • Xie LQ, Xie P, Li SX, Tang HJ, Liu H (2003) The low TN:TP ratio, a cause or a result of Microcystis blooms? Water Res 37:2073–2080. doi:10.1016/S0043-1354(02)00532-8

    Article  CAS  Google Scholar 

  • Xing W, Wu HP, Hao BB, Huang WM, Liu GH (2013) Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes. Environ Sci Technol 47:4695–4703. doi:10.1021/es303923w

    Article  CAS  Google Scholar 

  • Yabanli M, Yozukmaz A, Sel F (2014) Heavy metal accumulation in the leaves, stem and root of the invasive submerged macrophyte Myriophyllum spicatum L. (Haloragaceae): an example of Kadin Creek (Mugla, Turkey). Braz Arch Biol Technol 57:434–440

    Article  CAS  Google Scholar 

  • Yang ZF, Wang Y, Shen ZY et al (2009) Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J Hazard Mater 166:1186–1194

    Article  CAS  Google Scholar 

  • Zhang Z, Cao Y, Jeppesen E, Li W (2016) The response of Vallisneria spinulosa (Hydrocharitaceae) and plankton to pulse addition of inorganic nitrogen with different loading patterns. Hydrobiologia 767:175–184. doi:10.1007/s10750-015-2494-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (31601824, 51379133), CRES (Danish Strategic Research Council), CLEAR (a Villum Kann Rasmussen Centre of Excellence project), and the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (Environment including Climate Change), Contract No.: 603378 (http://www.mars-project.eu). We thank Anne Mette Poulsen for valuable editorial comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Cao, Y., Li, W. et al. The effects of cadmium pulse dosing on physiological traits and growth of the submerged macrophyte Vallisneria spinulosa and phytoplankton biomass: a mesocosm study. Environ Sci Pollut Res 24, 15308–15314 (2017). https://doi.org/10.1007/s11356-017-9155-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9155-6

Keywords

Navigation