Skip to main content
Log in

Application of chemical oxidation to remediate HCH-contaminated soil under batch and flow through conditions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This is the first study describing the chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soil under water saturated and unsaturated flow through conditions. Soil contaminated with β-HCH (45 mg kg−1) and γ-HCH (lindane, 25 mg kg−1) was sampled from former lindane waste storage site. Efficiency of following treatments was tested at circumneutral pH: H2O2 alone, H2O2/FeII, Na2S2O8 alone, Na2S2O8/FeII, and KMnO4. Experimental conditions (oxidant dose, liquid/solid ratio, and soil granulometry) were first optimized in batch experiments. Obtained results revealed that increasing dose of H2O2 improved the oxidation efficiency while in Na2S2O8 system, maximum HCHs were removed at 300 mM. However, oxidation efficiency was slightly improved by FeII-activation. Increasing the solid/liquid ratio decreased HCH removal in soil samples crushed to 500 μm while an opposite trend was observed for 2-mm samples. Dynamic column experiments showed that oxidation efficiency followed the order KMnO4 > Na2S2O8/FeII > Na2S2O8 whatever the flow condition, whereas the removal extent declined at higher flow rate (e.g., ~50% by KMnO4 at 0.5 mL/min as compared to ~30% at 2 mL/min). Both HCH removal and oxidant decomposition extents were found higher in saturated columns than the unsaturated ones. While no significant change in relative abundance of soil mineral constituents was observed before and after chemical oxidation, more than 60% of extractable organic matter was lost after chemical oxidation, thereby underscoring the non-selective behavior of chemical oxidation in soil. Due to the complexity of soil system, chemical oxidation has rarely been reported under flow through conditions, and therefore our findings will have promising implications in developing remediation techniques under dynamic conditions closer to field applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad M, Teel AL, Watts RJ (2010) Persulfate activation by subsurface minerals. J Contam Hydrol 115:34–45

    Article  CAS  Google Scholar 

  • Anipsitakis GP, Dionysiou DD (2004) Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol 38:3705–3712

    Article  CAS  Google Scholar 

  • Barnes JD, Denney RC, Mendham J, Thomas MJK (2005): Analyse chimique quantitative de Vogel. De Boeck Supérieur

  • Begum A, Gautam SK (2012) Endosulfan and lindane degradation using ozonation. Environ Technol 33:943–949

    Article  CAS  Google Scholar 

  • Beurskens JEM, Stams AJM, Zehnder AJB, Bachmann A (1991) Relative biochemical reactivity of three hexachlorocyclohexane isomers. Ecotoxicol Environ Safety 21:128–136

    Article  CAS  Google Scholar 

  • Brumblay RU (1971) Quantitative analysis – college outline. HarperCollins, New York

    Google Scholar 

  • Cao J, Zhang WX, Brown DG, Sethi D (2008) Oxidation of lindane with Fe (II)-activated sodium persulfate. Environ Eng Sci 25:221–228

    Article  CAS  Google Scholar 

  • Cheng M, Zeng G, Huang D, Lai C, Xu P, Zhang C, Liu Y (2016) Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds: a review. Chem Eng J 284:582–598

    Article  CAS  Google Scholar 

  • Dubearnes B (2006): Site de Sierentz, Etude sur les mécanismes de transfert de la pollution. Etude réalisée par l'ADEME, 32–54

  • Hanna K, Lassabatere L, Bechet B (2012) Transport of two naphthoic acids and salicylic acid in soil: experimental study and empirical modeling. Water Res 46:4457–4467

    Article  CAS  Google Scholar 

  • Johri AK, Dua M, Tuteja D, Saxena R, Saxena DM, Lal R (1998) Degradation of alpha, beta, gamma and delta-hexachlorocyclohexanes by Sphingomonas paucimobilis. Biotechnol Lett 20:885–887

    Article  CAS  Google Scholar 

  • Jonsson S, Persson Y, Frankki S, van Bavel B, Lundstedt S, Haglund P, Tysklind M (2007) Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton’s reagent: a multivariate evaluation of the importance of soil characteristics and PAH properties. J Hazard Mater 149:86–96

    Article  CAS  Google Scholar 

  • Kao CM, Huang KD, Wang JY, Chen TY, Chien HY (2008) Application of potassium permanganate as an oxidant for in situ oxidation of trichloroethylene-contaminated groundwater: a laboratory and kinetics study. J Hazard Mater 153:919–927

    Article  CAS  Google Scholar 

  • Khan S, He X, Khan HM, Boccelli D, Dionysiou DD (2016a) Efficient degradation of lindane in aqueous solution by iron (II) and/or UV activated peroxymonosulfate. J Photochem Photobiol A 316:37–43

    Article  CAS  Google Scholar 

  • Khan S, He X, Khan JA, Khan HM, Boccelli DL, Dionysiou DD (2016b) Kinetics and mechanism of sulfate radical- and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system. Chem Eng J. doi:10.1016/j.cej.2016.05.150

    Article  Google Scholar 

  • Kong SH, Watts RJ, Choi JH (1998) Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere 37:1473–1482

    Article  CAS  Google Scholar 

  • Laurent F, Cébron A, Schwartz C, Leyval C (2012) Oxidation of a PAH polluted soil using modified Fenton reaction in unsaturated condition affects biological and physico-chemical properties. Chemosphere 86:659–664

    Article  CAS  Google Scholar 

  • Lemaire J, Buès M, Kabeche T, Hanna K, Simonnot M-O (2013) Oxidant selection to treat an aged PAH contaminated soil by in situ chemical oxidation. J Environ Chem Eng 1:1261–1268

    Article  CAS  Google Scholar 

  • Lewis J, Sjöstrom J (2010) Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. J Contam Hydrol 115:1–13

    Article  CAS  Google Scholar 

  • Li S, Elliott DW, Spear ST, Ma L, Zhang W-X (2011) Hexachlorocyclohexanes in the environment: mechanisms of dechlorination. Crit Rev Environ Sci Technol 41:1747–1792

    Article  CAS  Google Scholar 

  • Manonmani HK (2011): Bioremediation of hexachlorocyclohexane contaminated soil: field trials. Pesticides in the modern world—pesticides use and management. InTech, New York, 475-504

    Google Scholar 

  • Matta R, Hanna K, Kone T, Chiron S (2008) Oxidation of 2, 4, 6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH. Chem Eng J 144:453–458

    Article  CAS  Google Scholar 

  • Nienow AM, Bezares-Cruz JC, Poyer IC, Hua I, Jafvert CT (2008) Hydrogen peroxide-assisted UV photodegradation of lindane. Chemosphere 72:1700–1705

    Article  CAS  Google Scholar 

  • Nitoi I, Oncescu T, Oancea P (2013) Mechanism and kinetic study for the degradation of lindane by photo-Fenton process. J Ind Eng Chem 19:305–309

    Article  CAS  Google Scholar 

  • Palmroth MRT, Langwaldt JH, Aunola TA, Goi A, Puhakka JA, Tuhkanen TA (2006) Treatment of PAH-contaminated soil by combination of Fenton’s reaction and biodegradation. J Chem Technol Biotech 81:598–607

    Article  CAS  Google Scholar 

  • Peng L, Deng D, Guan M, Fang X, Zhu Q (2015) Remediation HCHs POPs-contaminated soil by activated persulfate technologies: feasibility, impact of activation methods and mechanistic implications. Sep Purif Technol 150:215–222

    Article  CAS  Google Scholar 

  • Plassard F, Winiarski T, Petit-Ramel M (2000) Retention and distribution of three heavy metals in a carbonated soil: comparison between batch and unsaturated column studies. J Contam Hydrol 42:99–111

    Article  CAS  Google Scholar 

  • Romero A, Santos A, Vicente F, González C (2010) Diuron abatement using activated persulphate: effect of pH, Fe(II) and oxidant dosage. Chem Eng J 162:257–265

    Article  CAS  Google Scholar 

  • Rusch B, Hanna K, Humbert B (2010) Sorption and transport of salicylate in a porous heterogeneous medium of silica quartz and goethite. Environ. Sci. Technol. 44:2447–2453

    Article  CAS  Google Scholar 

  • Safarzadeh-Amiri A, Bolton JR, Cater SR (1996) The use of iron in advanced oxidation processes. J Adv Oxid Technol 18-26

  • Sirguey C, Tereza de Souza e Silva P, Schwartz C, Simonnot M-O (2008) Impact of chemical oxidation on soil quality. Chemosphere 72:282–289

    Article  CAS  Google Scholar 

  • Tamura H, Kawamura S, Hagayama M (1980) Acceleration of the oxidation of Fe2+ ions by Fe(III)-oxyhydroxides. Corros Sci 20:963–971

    Article  CAS  Google Scholar 

  • Tseng D-H, Juang L-C, Huang H-H (2012): Effect of oxygen and hydrogen peroxide on the photocatalytic degradation of monochlorobenzene in aqueous suspension. Int. J. Photoenergy 2012

  • Usman M, Faure P, Ruby C, Hanna K (2012a) Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation. Appl Catal B Environ 117-118:10–17

    Article  CAS  Google Scholar 

  • Usman M, Faure P, Ruby C, Hanna K (2012b) Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils. Chemosphere 87:234–240

    Article  CAS  Google Scholar 

  • Usman M, Tascone O, Faure P, Hanna K (2014) Chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soils. Sci Total Environ 476-477:434–439

    Article  CAS  Google Scholar 

  • Usman M, Hanna K, Haderlein S (2016a) Fenton oxidation to remediate PAHs in contaminated soils: a critical review of major limitations and counter-strategies. Sci Total Environ 569–570:179–190

    Article  Google Scholar 

  • Usman M, Chaudhary A, Biache C, Faure P, Hanna K (2016b) Effect of thermal pre-treatment on the availability of PAHs for successive chemical oxidation in contaminated soils. Environ Sci Pollut Res 23:1371–1380

    Article  CAS  Google Scholar 

  • Vijgen J, Abhilash P, Li Y, Lal R, Forter M, Torres J, Singh N, Yunus M, Tian C, Schäffer A, Weber R (2011) Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs—a global perspective on the management of lindane and its waste isomers. Environ Sci Pollut Res 18:152–162

    Article  CAS  Google Scholar 

  • Voldner EC, Li Y-F (1995) Global usage of selected persistent organochlorines. Sci Total Environ 160-161:201–210

    Article  Google Scholar 

  • Wacławek S, Antoš V, Hrabák P, Černík M, Elliott D (2015) Remediation of hexachlorocyclohexanes by electrochemically activated persulfates. Environ Sci Pollut Res 23:765–773

    Article  Google Scholar 

  • Wacławek S, Antoš V, Hrabák P, Černík M (2016) Remediation of hexachlorocyclohexanes by cobalt-mediated activation of peroxymonosulfate. Desalin Water Treat 57:26274–26279

    Article  Google Scholar 

  • Wang G-S, Hsieh S-T, Hong C-S (2000) Destruction of humic acid in water by UV light—catalyzed oxidation with hydrogen peroxide. Water Res 34:3882–3887

    Article  CAS  Google Scholar 

  • Weber JB, David MW (1982) Mobility of herbicides in soil columns under saturated- and unsaturated-flow conditions. Weed Sci 30:579–584

    Article  CAS  Google Scholar 

  • Willett KL, Ulrich EM, Hites RA (1998) Differential toxicity and environmental fates of hexachlorocyclohexane isomers. Environ. Sci. Technol. 32:2197–2207

    Article  CAS  Google Scholar 

  • Yan YE, Schwartz FW (1999) Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. J Contam Hydrol 37:343–365

    Article  CAS  Google Scholar 

  • Zhao D, Liao X, Yan X, Huling SG, Chai T, Tao H (2013) Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. J Hazard Mater 254-255:228–235

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from French organization ADEME “Agence de l'Environnement et de la Maîtrise de l'Energie” Convention no. 0972C0016 is gratefully acknowledged. The authors are also thankful to Prof. C. Ruby (UMR7564 LCPME) and C. Lorgeoux (UMR7359 Géoressources) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, M., Tascone, O., Rybnikova, V. et al. Application of chemical oxidation to remediate HCH-contaminated soil under batch and flow through conditions. Environ Sci Pollut Res 24, 14748–14757 (2017). https://doi.org/10.1007/s11356-017-9083-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9083-5

Keywords

Navigation