Skip to main content
Log in

Photooxidation of herbicide amitrole in the presence of fulvic acid

  • Water: From Pollution to Purification
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Fulvic acid (Henan ChangSheng Corporation) photoinduced degradation of non-UVA-absorbing herbicide amitrole (3-amino-1,2,4-triazole, AMT) as a way for its removal from polluted water was investigated in details. It was shown that the main primary species generated by fulvic acid under UVA radiation, triplet state and hydrated electron, are not directly involved in the herbicide degradation. AMT decays in reactions with secondary intermediates, reactive oxygen species, formed in reactions of the primary ones with dissolved oxygen. Singlet oxygen is responsible for 80% of herbicide oxidation, and OH and O2 −• radicals—for the remaining 20% of AMT. It was found that quantum yield of AMT photodegradation (ϕ 365nm) decreases linearly from 2.2 × 10−3 to 1.2 × 10−3 with the increase of fulvic acid concentration from 1.1 to 30 mg L−1. On the contrary, the increase of AMT concentration from 0.8 to 25 mg L−1 leads to practically linear growth of ϕ 365nm value from 1.8 × 10−4 to 4 × 10−3. Thus, the fulvic acid exhibits a good potential as UVA photooxidizer of organic pollutants sensitive to the singlet oxygen (ϕ 532nm(1O2) = 0.025 at pH 6.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfassi ZB, Schuler RH (1985) Reaction of azide radicals with aromatic compounds. Azide as a selective oxidant. J Phys Chem 89:3359–3363. doi:10.1021/j100261a040

    Article  CAS  Google Scholar 

  • Bamford D, Sorsa M, Gripenberg U, Laamanen I, Meretoja T (1976) Mutagenicity and toxicity of amitrole. III. Microbial tests. Mutation Res/Gen Toxicol 40:197–202. doi:10.1016/0165-1218(76)90045-8

    Article  CAS  Google Scholar 

  • Blough NV, Zepp RG (1995) Reactive oxygen species in natural waters. In: Foote CS, Valentine JS, Greenberg A, Liebman JF (eds) Active oxygen in chemistry. Chapman and Hall, New York, pp 280–331. doi:10.1007/978-94-007-0874-7_8

    Chapter  Google Scholar 

  • Brouwer AM (2011) Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl Chem 83:2213–2228. doi:10.1351/PAC-REP-10-09-31

    Article  CAS  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O−) in aqueous solution. J Phys Chem Ref Data 17:513. doi:10.1063/1.555805

    Article  CAS  Google Scholar 

  • Catastini C, Rafqah S, Mailhot G, Sarakha M (2004) Degradation of amitrole by excitation of Fe(III) aquo complexes in aqueous solutions. J Photochem Photobiol A 162:97–103. doi:10.1016/S1010-6030(03)00316-2

    Article  CAS  Google Scholar 

  • Chaikovskaya ON, Levin PP, Sul'timova NB, Sokolova IV, Kuz"min AV (2004) Triplet states of humic acids studied by laser flash photolysis using different excitation wavelengths. Russ Chem B, Int Ed 53:313–317. doi:10.1023/B:RUCB.0000030803.83476.4e

    Article  CAS  Google Scholar 

  • Chen Y, Hu C, Hu X, Qu J (2009) Indirect photodegradation of amine drugs in aqueous solution under simulated sunlight. Environ. Sci. Technol. 43:2760–2765. doi:10.1021/es803325j

    Article  CAS  Google Scholar 

  • Chen Y, Li H, Wang Z, Li H, Tao T, Zuo Y (2012) Photodegradation of selected β-blockers in aqueous fulvic acid solutions: kinetics, mechanism, and product analysis. Water Res 46:2965–2972. doi:10.1016/j.watres.2012.03.025

    Article  CAS  Google Scholar 

  • Cooper, W.J., Zika, R.G., Petasne, R.G., Fischer, A.M. (1989) Sunlight-induced photochemistry of humic substances in natural waters: major reactive species. In: Suffet, I.H., MacCarthy, P. Eds., ACS Symposium Series, vol. 219. American Chemical Society, Washington, DC, pp. 333–362. Doi: 10.1021/ba-1988-0219.ch022

  • Dalrymple RM, Carfagno AK, Sharpless C (2010) Correlations between dissolved organic matter optical properties and quantum yields of singlet oxygen and hydrogen peroxide. Environ Sci Technol 44:5824–5829. doi:10.1021/es101005u

    Article  CAS  Google Scholar 

  • de la d’Auzay Rochebrochard S, Brosillon S, Fourcade F, Amrane A (2007) Integrated Process for Degradation of Amitrole in Wastewaters: Photocatalysis/Biodegradation. Int. J. Chem. Reactor Eng. 5 Article A51. doi: 10.2202/1542-6580.1453

  • Fischer AM, Kliger DS, Winterle JS, Mill T (1985) Direct observation of phototransients in natural waters. Chemosphere 14:1299–1306. doi:10.1016/0045-6535(85)90150-X

    Article  CAS  Google Scholar 

  • Fischer AM, Winterle JM, Mill T (1987) Photochemistry of environmental aquatic systems. In: Zika RG, Cooper WJ (eds) ACS Symposium Series 327. American Chemical Society, Chapter 11, Washington, DC, pp 141–156. doi:10.1021/bk-1987-0327.ch011

  • Frederiksen PK, McIlroy SP, Nielsen CB, Nikolajsen L, Skovsen E, Jörgensen M, Mikkelsen KV, Ogilby PR (2005) Two-photon photosensitized production of singlet oxygen in water. J Am Chem Soc 127:255–269. doi:10.1021/ja0452020

    Article  CAS  Google Scholar 

  • Furukawa A, Oikawa S, Harada K, Sugiyama H, Hiraku Y, Murata M, Shimada A, Kawanishi S (2010) Oxidatively generated DNA damage induced by 3-amino-5-mercapto-1,2,4-triazole, a metabolite of carcinogenic amitrole. Mutat Res 694:7–12. doi:10.1016/j.mrfmmm.2010.08.004

  • Gaines TB, Kimbrough RD, Linder RE (1973) The toxicity of amitrole in the rat. Toxicol. Appl. Pharm. 26:118–129. doi:10.1016/0041-008X(73)90092-6

    Article  CAS  Google Scholar 

  • Galievsky VA, Stasheuski AS, Kiselyov VV, Shabusov AI, Belkov MV, Dzhagarov BM (2010) Laser NIR lifetime spectrometer with nanosecond time resolution. Instrum Exp Tech 53:568–574. doi:10.1134/S0020441210040184

    Article  CAS  Google Scholar 

  • Gollnick K, Schenck GO (1967) Organic chemistry. In: Hamer J (ed) 1,4-Cycloaddition reactions the diels-alder reaction in heterocyclic syntheses, chapter 10, vol 8. pp 255–344. doi:10.1016/B978-0-12-395743-6.50015-6

  • Haag WR, Hoigne J, Gassman E, Braun AM (1984) Singlet oxygen in surface waters: part II. Quantum yields of its production by some natural humic materials as a function of wavelength. Chemosphere 13:641–650. doi:10.1016/0045-6535(84)90200-5

    Article  CAS  Google Scholar 

  • Hare PM, Price EA, Bartels DM (2008) Hydrated electron extinction coefficient revisited. J Phys Chem A 112:6800–6802. doi:10.1021/jp804684w

    Article  CAS  Google Scholar 

  • Jensen-Korte U, Anderson C, Spiteller M (1987) Photodegradation of pesticides in the presence of humic substances. Sci Total Environ 62:47–54. doi:10.1016/0048-9697(87)90518-3

    Article  Google Scholar 

  • Klaus U, Oesterreich T, Volk M, Spiteller M (1998) Interaction of aquatic dissolved organic matter (DOM) with amitrole: the nature of the bound residues. Acta Hydrochim Hydrobiol 26:311–317. doi:10.1002/(SICI)1521-401X(199811)26:6<311::AID-AHEH311>3.0.CO;2-X

    Article  CAS  Google Scholar 

  • Lou T, Xie H (2006) Photochemical alteration of the molecular weight of dissolved organic matter. Chemosphere 65:2333–2342. doi:10.1016/j.chemosphere.2006.05.001

    Article  CAS  Google Scholar 

  • Makunina MP, Pozdnyakov IP, Grivin VP, Plyusnin VF (2014) Investigation of fulvic acid photochemistry in aqueous solutions by stationary and laser flash photolysis techniques. High Energy Chem. 48:197–201. doi:10.1134/S0018143914030072

    Article  CAS  Google Scholar 

  • Makunina MP, Pozdnyakov IP, Chen Y, Grivin VP, Bazhin NM, Plyusnin VF (2015) Mechanistic study of fulvic acid assisted photodegradation of propranolol in aqueous solution. Chemosphere 119:1406–1410. doi:10.1016/j.chemosphere.2014.10.008

    Article  CAS  Google Scholar 

  • McNeill K, Canonica S (2016) Triplet state dissolved organic matter in aquatic photochemistry: reaction mechanisms, substrate scope, and photophysical properties. Environ Sci: Processes Impacts 18:1381–1399. doi:10.1039/c6em00408c

    Article  CAS  Google Scholar 

  • Neta P, Huie RE, Ross AB (1988) Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data 17:1027. doi:10.1063/1.555808

    Article  CAS  Google Scholar 

  • Orellana-García F, Álvarez MA, López-Ramón V, Rivera-Utrilla J, Sánchez-Polo M, Mota AJ (2014) Photodegradation of herbicides with different chemical natures in aqueous solution by ultraviolet radiation. Effects of operational variables and solution chemistry. Chem Eng J 255:307–315. doi:10.1016/j.cej.2014.06.047

    Article  CAS  Google Scholar 

  • Orellana-García F, Álvarez MA, López-Ramón V, Rivera-Utrilla J, Sánchez-Polo M (2015) Effect of HO, SO4 •– and CO3 •−/HCO3 radicals on the photodegradation of the herbicide amitrole by UV radiation in aqueous solution. Chem Eng J 267:182–190. doi:10.1016/j.cej.2015.01.019

    Article  CAS  Google Scholar 

  • Paul A, Hackbarth S, Vogt RD, Burnison BK, Steinberg CEW (2004) Photogeneration of singlet oxygen by humic substances: comparison of humic substances of aquatic and terrestrial origin. Photochem Photobiol Sci 3:273. doi:10.1039/B312146A

    Article  CAS  Google Scholar 

  • Pozdnyakov IP, Plyusnin VF, Grivin VP, Vorobyev DY, Bazhin NM, Vauthey E (2006) Photolysis of sulfosalicylic acid in aqueous solutions over a wide pH range. J Photochem Photobiol A Chem 181:37–43. doi:10.1016/j.jphotochem.2005.10.030

    Article  CAS  Google Scholar 

  • Sánchez-Bayoa F, Hyne RV, Desseille KL (2010) An amperometric method for the detection of amitrole, glyphosate and its aminomethyl-phosphonic acid metabolite in environmental waters using passive samplers. Anal Chim Acta 675:125–131. doi:10.1016/j.aca.2010.07.013

    Article  CAS  Google Scholar 

  • Sharpless CM, Aeschbacher M, Page SE, Wenk J, Sander M, McNeill K (2014) Photooxidation-induced changes in optical, electrochemical, and photochemical properties of humic substances. Environ Sci Technol 48:2688–2696. doi:10.1021/es403925g

    Article  CAS  Google Scholar 

  • Stasheuski AS, Galievsky VA, Knyukshto VN, Ghazaryan RK, Gyulkhandanyan AG, Gyulkhandanyan GV, Dzhagarov BM (2014) Water-soluble pyridyl porphyrins with amphiphilic N-substituents: fluorescent properties and photosensitized formation of singlet oxygen. J Appl Spec 80:813–823. doi:10.1007/s10812-014-9849-1

    Article  CAS  Google Scholar 

  • Steinhoff D, Weber H, Mohr U, Boehme K (1983) Evaluation of amitrole (aminotriazole) for potential carcinogenicity in orally dosed rats, mice, and golden hamsters. Toxicol Appl Pharm 69:161–169. doi:10.1016/0041-008X(83)90296-X

    Article  CAS  Google Scholar 

  • Sul'timova NB, Levin PP, Chaikovskaya ON, Sokolova IV (2008) Laser photolysis study of the triplet states of fulvic acids in aqueous solutions. High Energy Chem 42:464–468. doi:10.1134/S0018143908060088

    Article  CAS  Google Scholar 

  • Thurman EM (1985) Organic geochemistry of natural waters. M. Nijhoff and W. Junk Publishers, Dordrecht. doi:10.1007/978-94-009-5095-5

    Book  Google Scholar 

  • Tjälve H (1974) Fetal uptake and embryogenetic effects of aminotriazole in mice. Arch Toxicol 33:41–48. doi:10.1007/BF00297051

    Article  Google Scholar 

  • Watanabe N, Horikoshi S, Kawasaki A, Hidaka H (2005) Formation of refractory ring-expanded triazine intermediates during the photocatalyzed mineralization of the endocrine disruptor amitrole and related triazole derivatives at UV-irradiated TiO2/H2O interfaces. Environ. Sci. Technol. 39:2320–2326. doi:10.1021/es049791l

    Article  CAS  Google Scholar 

  • Weller C, Horn S, Herrmann H (2013) Effects of Fe(III)-concentration, speciation, excitation-wavelength and light intensity on the quantum yield of iron(III)-oxalato complex photolysis. J Photochem Photobiol A Chem 255:41–49. doi:10.1016/j.jphotochem.2013.01.014

    Article  CAS  Google Scholar 

  • Wilkinson F, Helman WP, Ross AB (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation. J Phys Chem Ref Data 24:663. doi:10.1063/1.555965

    Article  CAS  Google Scholar 

  • Zepp RG, Braun AM, Hoigné J, Leenheer JA (1987) Photoproduction of hydrated electrons from natural organic solutes in aquatic environments. Environ. Sci. Technol. 21:485–490. doi:10.1021/es00159a010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Russian Foundation for Basic Research (grants no. 15-03-03376, 14-03-00692) and by Belorussian Republican Foundation for Fundamental Research (joint with SB RAS project BRFFR-SB RAS no. F15SО-036). HPLC analyses were performed with the financial support from the Grant Council of President of RF (MK-1515.2017.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan P. Pozdnyakov.

Additional information

Responsible editor: Vítor Pais Vilar

Electronic supplementary material

ESM 1

(PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozdnyakov, I.P., Sherin, P.S., Salomatova, V.A. et al. Photooxidation of herbicide amitrole in the presence of fulvic acid. Environ Sci Pollut Res 25, 20320–20327 (2018). https://doi.org/10.1007/s11356-017-8580-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8580-x

Keywords

Navigation