Skip to main content
Log in

Study of photodegradation and photooxidation of p-arsanilic acid in water solutions at pH = 7: kinetics and by-products

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The paper presents the kinetics and proposed pathways photodegradation and photooxidation of p-arsanilic acid, in a neutral environment by ozone and hydrogen peroxide. The results showed that in a neutral environment, photoozonation process was characterized by the highest decomposition rate constant (k) (k = 31.8 × 10−3 min−1). The rate constants decreased in the order UV/O3 > O3 > UV/H2O2 > H2O2 > UV. It was also found that under pH = 7, decomposition of p-arsanilic acid leads mainly to the formation of aniline, which undergoes secondary reactions. Intermediate products of oxidation and photooxidation by hydrogen peroxide like nitrobenzene, nitrophenol, azobenzenes, and phenylazophenol were identified depending on processes. However, in the photodegradation process, formation of nitrasone as a reaction product of p-arsanilic acid with oxygen in the singlet state was observed. In the case of ozonation and photoozonation, in addition, aniline formation of carboxylic acids was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arroyo-Abad U, Elizalde-Gonzalez MP, Hidalogo-Moreno CM, Mattusch J, Wennrich R (2011) Retention of phenylarsenicals in soils derived from volcanic metrials. J Hazard Mater 186:1328–1334

    Article  CAS  Google Scholar 

  • B’Hymer C, Caruso JA (2004) Arsenic and its speciation analysis using high – performance liquid chromatography and inductively coupled plasma mass spectrometry. J Chromatogr A 1045:1–13

    Article  Google Scholar 

  • Bednar AJ, Garbarino JR, Ferrer I, Rutherford DW, Wershaw RL, Ranville JF, Wildeman TR (2003) Photodegradation of roxarsone in poultry litter leachates. Sci Total Environ 302:237–245

    Article  CAS  Google Scholar 

  • Blaser HU (2006) A golden boost to an old reaction. Science 313(5785):312–313

    Article  CAS  Google Scholar 

  • Briviba K, Devasagayam TP, Sies H, Steenken S (1993) Selective para hydroxylation of phenol and aniline by singlet molecular oxygen. Chem Res Toxicol 6(4):548–553

    Article  CAS  Google Scholar 

  • Burns EA, Strenli CA, Averell PR (1970) The analytical chemistry of nitrogen and its compounds. Wiley – Interscience, New York, p 51

    Google Scholar 

  • Casiot C, Morin G, Juillot F, Bruneela O, Personn JC, Leblanc M, Duquesne K, Bonnefoy V, Elbaz-Poulichet F (2003) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoul"es creek, France). Water Res 37:2929–2936

    Article  CAS  Google Scholar 

  • Chappel J, Chiswell B, Olszowy H (1995) Speciation of arsenic in a contaminated soil by solvent extraction. Talanta 43(3):323–329

    Article  Google Scholar 

  • Chatterjee A (1999) Behaviour of anionic arsenic compounds in microwave system with nitric acid and hydrogen peroxide – preliminary laboratory study. Sci Total Environ 228:25–34

    Article  Google Scholar 

  • Czaplicka M, Manko T, Wypych J (2005) Determination of chlorophenols and their photodegradation products in aqueous solutions using liquid-liquid extraction and solid phase microextraction - a comparison. Chem Anal (Warsaw) 50(5):887–896

    CAS  Google Scholar 

  • Czaplicka M, Mańko T, Czarnul J, Wypych J (2009) Application of solid phase microextraction for determination of dihydroxybenzenes, trihydroxybenzenes and chlorohydroxybenzenes in water and wastewater. Fresenius Environ Bull 18(4):491–498

    CAS  Google Scholar 

  • Czaplicka M, Kurowski R, Jaworek K, Bratek Ł (2013) Application of advanced oxidation processes for cleaning of industrial water generated in wet dedusting of shaft furnace gases. Environ Technol 34(9-12):1455–1462

    Article  CAS  Google Scholar 

  • Czaplicka M, Bratek Ł, Jaworek K, Bonarski J, Pawlak S (2014) Photooxidation of p-arsanilic acid in acidic solutions: kinetics and the identification of by- products and reaction pathways. Chem Eng J 243:364–371

    Article  CAS  Google Scholar 

  • EPA – 454/R-98-013, Locating and estimating air emissions from sources of arsenic and arsenic compounds. Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Triangle Park, NC (June 1998)

  • Fendler JH, Gasowski GL (1968) Radiation-induced hydroxylation of nitrobenzene in dilute aqueous solution. J Org Chem 33(5):1865–1868

    Article  CAS  Google Scholar 

  • Furusho Y, Maki T, Hasegawa H (2011) Selective separation of arsenic species from aqueos solutions with immobilized macrocyclic material containing solid phase extraction columns. Chemosphere 82:549–556

    Article  Google Scholar 

  • Gong Z, Lu X, Ma M, Watt C, Le X (2002) Arsenic speciation analysis. Talanta 58:77–96

    Article  CAS  Google Scholar 

  • Habuda-Stanić M, Kules M, Kalajdzi B, Romić Z (2007) Quality of graundwater in eastern Croatia. The problem of arsenic pollution. Desalination 210:157–162

    Article  Google Scholar 

  • Hering JG (1996) Risk assessment for arsenic in drinking water: limits to achievable risk levels. J Hazard Mater 45:175–184

    Article  CAS  Google Scholar 

  • Huang JH, Hu KN, Decker B (2011) Organic arsenic in yhe soil environment: speciation, occurrence, transformation and adsorption behaviour. Water Air Soil Pollut 219:401–415

    Article  CAS  Google Scholar 

  • Jain CK, Ali J (2000) Arsenic: occurance, toxicity and speciation techniques. Water Res 34:4304–4312

    Article  CAS  Google Scholar 

  • Jaworek K, Czaplicka M, Bratek Ł (2014) Decomposition of phenylarsonic acid by AOP processes: degradation rate constants and by products. Environ Sci Pollut Res 21:11917–11923

    Article  CAS  Google Scholar 

  • Karabulut B, Tapramaz R (1999) EPR study of gamma irradiated arsanilic acid single crystal. Radiat Phys Chem 55:331–335

    Article  CAS  Google Scholar 

  • Kenyon EM, Hughes MF (2001) A concise review of the toxicity and carcinogenicity of dimethylarsinic acid. Toxicology 160:227–236

    Article  CAS  Google Scholar 

  • Kochany EL (1992) Degradation of nitrobenzene and nitrophenols by means of advanced oxidation processes in a homogeneous phase: photolysis in the presence of hydrogen peroxide versus the Fenton reaction. Chemosphere 24(7):1369–1380

    Article  Google Scholar 

  • Kohler M, Hofmann K, Volsgen F, Thurow K, Koch A (2001) Bacterial relese of arsenic ions and organoarsenic compounds from soil contaminated by chemical warfare agents. Chemosphere 42:425–429

    Article  CAS  Google Scholar 

  • Leermakers M, Morabito R, Quevauviller P (2006) Toxic arsenic compounds in environmental samples: Speciation and validation. Trends Anal Chem 25:1–10

    Article  CAS  Google Scholar 

  • Melamed D (2005) Monitoring arsenic in the environment: a review of science and technologies with the potential for field measurements. Anal Chim Acta 532:1–13

    Article  CAS  Google Scholar 

  • Miguel R, Andreas K, Sandra C, Esther C, Santiago E (2000) Influence of H2O2 and Fe(III) in the photodegradation of nitrobenzene. J Photochem Photobiol A 133(1–2):123–127

    Google Scholar 

  • Patric JS, Ayala-Ferro F, Cullen WR, Carter DE, Aposhian HV (2000) Monomethylarsenous acid (MMAIII) is more toxic than arsenite in Chang Human Hepatocytes. Toxicol Appl Pharmacol 163:203–207

    Article  Google Scholar 

  • Ringmann S, Boch K, Marquardt W, Schuster M, Schlemmer G, Kainrath P (2002) Microwave – assisted digestion of organoarsenic compounds for the determination of total arsenic in aqueous, biological, and sediment samples using flow injection hydride generation electrothermal atomic absorption spectrometry. Anal Chim Acta 452:207–215

    Article  CAS  Google Scholar 

  • Romero A, Santos A, Vicente F, Rodriguez S, Lafuente L (2009) In situ oxidation remediation technologies: Kinetic of hydrogen peroxide decomposition on soil organic matter. J Hazard Mater 170:627–632

    Article  CAS  Google Scholar 

  • Rubio R, Alberti J, Pedro A, Rauret G (1995) On – line photolytic decomposition for the determination of organoarsenic compounds. Trends Anal Chem 14(6):274–279

    Article  CAS  Google Scholar 

  • Schaeffer R, Francesconi KA, Kienzl N, Soeroes C, Fodor P, Váradi L, Raml R, Goessler W, Kuehnelt D (2006) Arsenic speciation in freshwater organisms from the river Danube in Hungary. Talanta 69(4):856–865

    Article  CAS  Google Scholar 

  • Schoene K, Bruckert HJ, Jurling H, Steinhanses J (1996) Derivatization of 10- chloro – 5, 10 – dihydrophenarsazine (Adamsite) for gas chromatographic analysis. J Chromatogr A 719:401–409

    Article  CAS  Google Scholar 

  • Sheppard SC (1992) Summary of phytotoxic levels of soil arsenic. Water Air Soil Pollut 64:539–550

    Article  CAS  Google Scholar 

  • Sierra-Alvarez R, Cortinas I, Field JA (2010) Methanogenic inhibition by roxarsone (4-hydroxy – 3 – nitro – phenylarsonic acid) and related aromatic arsenic compounds. J Hazard Mater 175:352–358

    Article  CAS  Google Scholar 

  • Szostek B, Aldstadt JH (1998) Determination of organoarsenicals in the environment by solid-phase microextraction–gas chromatography–mass spectrometry. J Chromatogr A 807:253–263

    Article  CAS  Google Scholar 

  • Tornes JA, Opstad AM, Johnsen BA (2006) Determination of organoarsenic warfare agents in sediment samples from Skagerrak by gas chromatography – mass spectrometry. Sci Total Environ 356:235–246

    Article  CAS  Google Scholar 

  • Wang A, Chun HU, Jiuhui Q, Yang MY, Huijuan L, Jia R, Rong Q, Jingfang S (2008) Phototransformation of nitrobenzene in the Songhua River: Kinetics and photoproduct analysis. J Environ Sci 20:787–795

    Article  CAS  Google Scholar 

  • Xu T, Kamat PV, Joshi S, Mebel AM, Cai Y, O’Shea KE (2007) Hydroxyl radical mediated degradation of phenylarsonic acid. J Phys Chem A 111:7819–7824

    Article  CAS  Google Scholar 

  • Zhang Q, Minami H, Inoue S, Atsuya I (2004) Differential determination of trance amounts of As (III) and As (V) in seawater by solid sampling atomic absorption spectrometry. Anal Chim Acta 508:99–105

    Article  CAS  Google Scholar 

  • Zheng S, Jiang W, Cai Y, Donysiou D, O’Shea KE (2014) Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2 suspension. Catal Today 224:83–88

    Article  CAS  Google Scholar 

  • Zheng S, Jiang W, Rashid M, Cai Y, Donysiou D, O’Shea KE (2015) Selective reduction of Cr (VI) in Chromium, Copper and Arsenic (CCA) mixed waste streams using UV/TiO2photocatalysis. Molecules 20(2):2622–2635

    Article  CAS  Google Scholar 

  • Ziołek M (2004) Catalytic liquid-phase oxidation in heterogeneous system as green chemistry goal - Advantages and disadvantages of MCM-41 used as catalyst. Catal Today 90:145–150

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Czaplicka.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Czaplicka, M., Jaworek, K. & Bąk, M. Study of photodegradation and photooxidation of p-arsanilic acid in water solutions at pH = 7: kinetics and by-products. Environ Sci Pollut Res 22, 16927–16935 (2015). https://doi.org/10.1007/s11356-015-4890-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4890-z

Keywords

Navigation