Skip to main content

Advertisement

Log in

Possible protective effect of the algae spirulina against nephrotoxicity induced by cyclosporine A and/or gamma radiation in rats

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study was conducted to evaluate the possible protective role of the algae spirulina (Sp) against nephrotoxicity and oxidative stress which are the main secondary effects induced by the immunosuppressant drug CSA and/or ionizing radiation. In this study, male rats were given Sp (1 g/kg) either for 15 days before irradiation (6.5 Gy) or 5 days before and 10 days concomitant with CSA (25 mg/kg). Markers used to assess renal injury included serum creatinine, urea, glucose, albumin, protein, and lipid profile as well as kidney content of reduced glutathione (GSH); lipid peroxidation (thiobarbituric acid reactive substances (TBARS)); nitrite and superoxide dismutase (SOD) activity. In addition, some trace elements (Zn and Mg) were estimated in kidney. Apoptosis was assessed by immunohistochemical estimation of caspase-3 expression in addition to histopathological examination. Results revealed that gamma radiation and/or CSA induced elevation in urea, creatinine, lipids, and glucose while decreasing albumin and protein levels. There was a noticeable increase in kidney content of GSH, TBARS, and nitrite. Meanwhile, profound decrease in kidney SOD activity was observed. Treatment with Sp significantly reversed the changes induced by CSA and/or gamma radiation in renal function tests. Spirulina also ameliorated kidney oxidative stress through decreasing GSH, TBARS, and nitrite kidney content while increasing SOD activity. Histopathological examination further confirmed Sp protective efficacy. Moreover, kidney caspase-3 expression that was triggered by CSA and/or gamma radiation was decreased. In conclusion, spirulina can be regarded as a promising renoprotective natural agent against renal injury induced by CSA and/or gamma radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd E Kader MA, El Kafrawy MH, AMA T, Ali MM, Mohamed AS (2015) Evaluation of taurine role on some biochemical and histological alterations in γ - irradiated rats. Int J Pharm Sci Rev Res 30(1):263–271

    Google Scholar 

  • Abdel-Salam OM, Hadajat I, Baiuomy AR, El-Shinawy S, Arbid MS (2006) Exposure of rats to whole body gamma rays induces early alterations in biliary secretion. Turk J Med Sci 36(5):263–269

    CAS  Google Scholar 

  • Agarwal A, Prasad GR (2016) Post-transplant dyslipidemia: mechanisms, diagnosis and management. World J Transplant 6(1):125–134. https://doi.org/10.5500/wjt.v6.i1.125

    Article  Google Scholar 

  • Ali SK, Saleh AM (2012) Spirulina—an overview. Int J Pharm Pharm Sci 4(3):9–15

    CAS  Google Scholar 

  • Anees LM, Ibrahim RM, Kamal El-Dein EM (2014) Protective effect of Panax ginseng against radiation induced oxidative stress on liver tissue of male albino rats. AJPCT 2(10):1141–1158

    Google Scholar 

  • Bäckman L, Appelkvist EL, Dallner G (1988) Influence of cyclosporine A on protein synthesis in rat liver. Exp Mol Pathol 49(1):38–49. https://doi.org/10.1016/0014-4800(88)90019-6

    Article  Google Scholar 

  • Baker JE, Fish BL, Su J, Haworth ST, Strande JL, Komorowski RA, Migrino RQ, Doppalapudi A, Harmann L, Allen Li X, Hopewell JW, Moulder JE (2009) 10 Gy total body irradiation increases risk of coronary sclerosis, degeneration of heart structure and function in a rat model. Int J Radiat Biol 85(12):1089–1100. https://doi.org/10.3109/09553000903264473

    Article  CAS  Google Scholar 

  • Bhat VB, Madyastha KM (2000) C-phycocyanin: a potent peroxyl radical scavenger in vivo and in vitro. Biochem Biophys Res Commun 275(1):20–25. https://doi.org/10.1006/bbrc.2000.3270

    Article  CAS  Google Scholar 

  • Bhat VB, Madyastha KM (2001) Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: protection against oxidative damage to DNA. Biochem Biophys Res Commun 285(2):262–266. https://doi.org/10.1006/bbrc.2001.5195

    Article  CAS  Google Scholar 

  • Bovee KC (1986) Renal function and laboratory evaluation. Toxicol Pathol 14(1):26–36. https://doi.org/10.1177/019262338601400104

    Article  CAS  Google Scholar 

  • Buffoli B, Pechanova O, Kojsova S, Andriantsitohaina R, Giugno L, Bianchi R, Rezzani R (2005) Provinol prevents CsA-induced nephrotoxicity by reducing reactive oxygen species, iNOS, and NF-kB expression. J Histochem Cytochem 53(12):1459–1468. https://doi.org/10.1369/jhc.5A6623.2005

    Article  CAS  Google Scholar 

  • Burdmann EA, Andoh TF, Yu L, Bennett WM (2003) Cyclosporine nephrotoxicity. Semin Nephrol 23(5):465–476. https://doi.org/10.1016/S0270-9295(03)00090-1

    Article  CAS  Google Scholar 

  • Chakravarthi S, Chong CF, Haleagrahara N (2009) Apoptosis and expression of bcl-2 in cyclosporine induced renal damage and its reversal by beneficial effects of 4′, 5′, 7′- trihydroxyflavone. Journal of Analytical Bio- Science 32(4):320–327

    CAS  Google Scholar 

  • Chandramohan Y, Parameswari CS (2013) Therapeutic efficacy of naringin on cyclosporine (A) induced nephrotoxicity in rats: involvement of hemeoxygenase-1. Pharmacol Rep 65(5):1336–1344. https://doi.org/10.1016/S1734-1140(13)71492-0

    Article  CAS  Google Scholar 

  • Cohen EP, Robbins ME (2003) Radiation nephropathy. Semin Nephrol 23(5):486–499. https://doi.org/10.1016/S0270-9295(03)00093-7

    Article  Google Scholar 

  • Coskun ZK, Kerem M, Gurbuz N, Omeroglu S, Pasaoglu H, Demirtas C, Lortlar N, Salman B, Pasaoglu OT, Turgut HB (2011) The study of biochemical and histopathological effects of spirulina in rats with TNBS-induced colitis. Bratisl Lek Listy 112(5):235–243

    CAS  Google Scholar 

  • Ferrero ME, Marni A, Parise M, Solari PC, Corsi M, Gaja G (1992) Cyclosporine-induced insulin release in rats is related to an increase in plasma lipid levels. Transpl Int 5(Suppl 1):S494–S496

    Google Scholar 

  • Flora SJ (2007) Role of free radicals and antioxidants in health and disease. Cell Mol Biol (Noisy-le-grand) 53(1):1–2

    CAS  Google Scholar 

  • Gad AS, Khadrawy YA, El-Nekeety AA, Mohamed SR, Hassan NS, Abdel-Wahhab MA (2011) Antioxidant activity and hepatoprotective effects of whey protein and spirulina in rats. Nutrition 27(5):582–589. https://doi.org/10.1016/j.nut.2010.04.002

    Article  CAS  Google Scholar 

  • Garg MC, Chaudhary DP, Bansal DD (2005) Effect of vitamin E supplementation on diabetes induced oxidative stress in experimental diabetes in rats. Indian J Exp Biol 43(2):177–180

    CAS  Google Scholar 

  • Gaurav D, Preet S, Dua KK (2010) Protective effect of Spirulina platensis on cadmium induced renal toxicity in Wistar rats. Archives of Applied Science Research 2(1):390–397

    CAS  Google Scholar 

  • Gorbunov NV, Pogue-Geile KL, Epperly MW, Bigbee WL, Draviam R, Day BW, Wald N, Watkins SC, Greenberger JS (2000) Activation of the nitric oxide synthase 2 pathway in the response of bone marrow stromal cells to high doses of ionizing radiation. Radiat Res 154(1):73–86

  • Habib MAB, Parvin M, Huntington TC, Hasan MR (2008) A review on culture, production and use of spirulina as food for humans and feeds for domestic animals and fish. FAO Fisheries and Aquaculture Circular. No. 1034. Rome, FAO., 33p

  • Haleagrahara N, Chakravarthi S, Kulur AB, Yee TM (2014) Plant flavone apigenin protects against cyclosporine-induced histological and biochemical changes in the kidney in rats. Biomed Prev Nutr 4(4):589–593. https://doi.org/10.1016/j.bionut.2014.07.006

    Article  Google Scholar 

  • Healy E, Dempsey M, Lally C, Ryan MP (1998) Apoptosis and necrosis: mechanisms of cell death induced by cyclosporine A in a renal proximal tubular cell line. Kidney Int 54(6):1955–1966. https://doi.org/10.1046/j.1523-1755.1998.00202.x

    Article  CAS  Google Scholar 

  • Helmy MW, El-Gowelli HM, Ali RM, El-Mas MM (2015) Endothelin ETA receptor/lipid peroxides/COX-2/TGF-β1 signalling underlies aggravated nephrotoxicity caused by cyclosporine plus indomethacin in rats. Br J Pharmacol 172(17):4291–4302. https://doi.org/10.1111/bph.13199

    Article  CAS  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) The use of antiavidin antibody and avidin-biotin peroxidase complex in immunoperoxidase technics. Am J Clin Pathol 75(6):816–821. https://doi.org/10.1093/ajcp/75.6.816

    Article  CAS  Google Scholar 

  • IAEA (1980) Elemental analysis of biological materials. International Atomic Energy Agency, IAEA, Veinna. Technical Reports Series. No 197, P. 379

  • IARC (1990) Ciclosporin. In: IARC monographs on the evaluation of carcinogenic risks to humans, vol. 50: pharmaceutical drugs. Lyon, France: International Agency for Research on Cancer; p. 77–114

  • Iwata K, Inayama T, Kato T (1990) Effects of Spirulina platensis on plasma lipoprotein lipase activity in fructose induced hyperlipidemic rats. J Nutr Sci Vitaminol (Tokyo) 36(2):165–171. https://doi.org/10.3177/jnsv.36.165

    Article  CAS  Google Scholar 

  • Kafafy YA, Ashry O (2000) Antioxidative potential of parsley on gamma irradiated rats. Egypt J Rad Sci Applic 14(1):25–42

    Google Scholar 

  • Kempner ES (2001) Effects of high-energy electrons and gamma rays directly on protein molecules. J Pharm Sci 90(10):1637–1646. https://doi.org/10.1002/jps.1114

    Article  CAS  Google Scholar 

  • Kotb MA, El-khatib AM, Morsey AA, Ramadan MIA, El-Bassiouni EA (1990) Changes in mineral elements in some tissues of mice following neutron irradiation. Isotopenpaxis 26(7):297–300. https://doi.org/10.1080/10256019008624308

    CAS  Google Scholar 

  • Kumar V, Bhatnagar AK, Srivastava JN (2011) Antibacterial activity of crude extracts of Spirulina platensis and its structural elucidation of bioactive compound. J Med Plants Res 5(32):7043–7048. https://doi.org/10.5897/JMPR11.1175

    CAS  Google Scholar 

  • Layam A, Reddy CLK (2006) Antidiabetic property of spirulina. Diabetol Croat 35(2):29–33

    Google Scholar 

  • Ledeganck KJ, Boulet GA, Horvath CA, Vinckx M, Bogers JJ, Van Den Bossche R, Verpooten GA, De Winter BY (2011) Expression of renal distal tubule transporters TRPM6 and NCC in a rat model of cyclosporine nephrotoxicity and effect of EGF treatment. Am J Physiol Renal Physiol 301(3):F486–F493. https://doi.org/10.1152/ajprenal.00116.2011

    Article  CAS  Google Scholar 

  • Le Goff W, Peng DQ, Settle M, Brubaker G, Morton RE, Smith JD (2004) Cyclosporin A traps ABCA1 at the plasma membrane and inhibits ABCA1-mediated lipid efflux to apolipoprotein A-I. Arterioscler Thromb Vasc Biol 24(11):2155–2161. https://doi.org/10.1161/01.ATV.0000144811.94581.52

    Article  Google Scholar 

  • Lopez-Miranda J, Vilella E, Perez-Jimenez F, Espino A, Jimenez-Pereperez JA, Masana L, Turner PR (1993) Low-density lipoprotein metabolism in rats treated with cyclosporine. Metabolism 42(6):678–683. https://doi.org/10.1016/0026-0495(93)90232-D

    Article  CAS  Google Scholar 

  • Mahdy AM, Saada HN, El-Naggar AM, Abdel-Salam AM, Osama ZS (1997) The combined effect of vitamin C and single or fractionated gamma irradiation on serum contents of proteins and urea in albino rats. Isot Radiat Res 29(1, 2):31–37

    Google Scholar 

  • Makhlouf R, Makhlouf I (2012) Evaluation of the effect of spirulina against gamma irradiation induced oxidative stress and tissue injury in rats. Int J Appl Sci Eng Res 1(1):152–164. https://doi.org/10.6088/ijaser.0020101016

    CAS  Google Scholar 

  • Mansour HH (2013) Protective effect of ginseng against gamma-irradiation-induced oxidative stress and endothelial dysfunction in rats. EXCLI J 12:766–777

    Google Scholar 

  • Mary NK, Shylesh BS, Babu BH, Padikkala J (2002) Antioxidant and hypolipidaemic activity of a herbal formulation—liposem. Indian J Exp Biol 40(8):901–904

    CAS  Google Scholar 

  • Minami M, Yoshikawa H (1979) A simplified assay method of superoxide dismutase activity for clinical use. Clin Chim Acta 92(3):337–342. https://doi.org/10.1016/0009-8981(79)90211-0

    Article  CAS  Google Scholar 

  • Morales A, Miranda M, Sanchez-Reyes A, Colell A, Biete A, Fernández-Checa J (1998) Transcriptional regulation of the heavy subunit chain of γ-glutamylcysteine synthetase by ionizing radiation. FEBS Lett 427(1):15–20. https://doi.org/10.1016/S0014-5793(98)00381-0

    Article  CAS  Google Scholar 

  • Moulder JE, Fish BL, Regner KR, Cohen EP, Raife TJ (2002) Retinoic acid exacerbates experimental radiation nephropathy. Radiat Res 157(2):199–203

  • Munjal C, Bhattacharyya S (2016) Supplementation of spirulina and vitamin C attenuated the nephrotoxicity induced by cisplatin administration. IJRG 4(1):93–107

    Google Scholar 

  • Nada AS, Hawas AM (2012) Rhubarb extract ameliorates some biochemical disorders induced by gamma irradiation in male rats. J Radiat Res Appl Sci 5(2):393–408

    Google Scholar 

  • Naesens M, Kuypers DR, Sarwal M (2009) Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 4(2):481–508. https://doi.org/10.2215/CJN.04800908

    CAS  Google Scholar 

  • Nagaoka S, Shimizu K, Kaneko H, Shibayama F, Morikawa K, Kanamaru Y, Otsuka A, Hirahashi T, Kato T (2005) Novel protein C-phycocyanin plays a crucial role in the hypocholesterolemic action of Spirulina platensis concentrates in rats. J Nutr 135(10):2425–2430

    Article  CAS  Google Scholar 

  • Nagaraja HS, Jassal RS, Chakravarthi S, Thanikachalam P, Lee N, Anupama BK (2009) Apigenin reduces cyclosporine-A induced changes in lipid hydroperoxides and total antioxidants in Sprague-Dawley rats. JCCM 4(1):26–31

    CAS  Google Scholar 

  • Nankivell BJ, Borrows RJ, Fung CL, O'Connell PJ, Allen RD, Chapman JR (2003) The natural history of chronic allograft nephropathy. N Engl J Med 349(24):2326–2333. https://doi.org/10.1056/NEJMoa020009

    Article  CAS  Google Scholar 

  • Osredkar J, Sustar N (2011) Copper and zinc, biological role and significance of copper/zinc imbalance. J Clin Toxicol S3:001. https://doi.org/10.4172/2161-0495.S3-001

    Article  Google Scholar 

  • Paolisso G, Scheen A, D’Onofrio F, Lefèbvre P (1990) Magnesium and glucose homeostasis. Diabetologia 33(9):511–514. https://doi.org/10.1007/BF00404136

    Article  CAS  Google Scholar 

  • Petkovska L, Ivanovski N, Dimitrovski C, Serafimoski V (2008) Clinical importance of insulin resistance after renal transplantation in patients on triple immunosuppressive therapy with cyclosporine, corticosteroids and mycophenolate mofetil. Prilozi 29(1):129–139

    CAS  Google Scholar 

  • Prasad KN, Cole WC, Haase GM (2004) Radiation protection in humans: extending the concept of as low as reasonably achievable (ALARA) from dose to biological damage. Br J Radiol 77(914):97–99. https://doi.org/10.1259/bjr/88081058

    Article  CAS  Google Scholar 

  • Pratheeshkumar P, Kuttan G (2011) Protective role of Vernonia cinerea L. against gamma radiation-induced immunosupression and oxidative stress in mice. Hum Exp Toxicol 30(8):1022–1038. https://doi.org/10.1177/0960327110385959

    Article  CAS  Google Scholar 

  • Ravi M, De SL, Azharuddin S, Paul SF (2010) The beneficial effects of spirulina focusing on its immunomodulatory and antioxidant properties. Nutr Diet Suppl 2:73–83. https://doi.org/10.2147/NDS.S9838

    Google Scholar 

  • Reddy GR, Babu KS (1980) Effects of X-irradiation on some aspects of protein metabolism in the frog, Rana hexadactyla. Proc Anim Sci 89(4):381–385. https://doi.org/10.1007/BF03179192

    Article  CAS  Google Scholar 

  • Robbins ME, O’Malley Y, Zhao W, Davis CS, Bonsib SM (2001) The role of tubulointerstitium in radiation-induced renal fibrosis. Radiat Res 155(3):481–489

  • Romay C, Armesto J, Remirez D, Gonzalez R, Ledon N, Garcia I (1998) Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm Res 47(1):36–41. https://doi.org/10.1007/s000110050256

    Article  CAS  Google Scholar 

  • Saad SY, Najjar TA (2005) Effects of STZ-induced diabetes and its treatment with vanadyl sulphate on cyclosporine A-induced nephrotoxicity in rats. Arch Toxicol 79(9):493–499. https://doi.org/10.1007/s00204-005-0663-7

    Article  CAS  Google Scholar 

  • Seven I, Gül Baykalir B, Tatli Seven P, Dagoglu G (2014) The ameliorative effects of propolis against cyclosporine A induced hepatotoxicity and nephrotoxicity in rats. Kafkas Univ Vet Fak Derg 20(5):641–648. https://doi.org/10.9775/kvfd.2013.10643

    Google Scholar 

  • Sinanoglu O, Yener AN, Ekici S, Midi A, Aksungar FB (2012) The protective effects of spirulina in cyclophosphamide induced nephrotoxicity and urotoxicity in rats. Urology 80(6):1392.e1–1392.e6. https://doi.org/10.1016/j.urology.2012.06.053

    Article  Google Scholar 

  • Slattery C, Campbell E, McMorrow T, Ryan MP (2005) Cyclosporine A-induced renal fibrosis: a role for epithelial-mesenchymal transition. Am J Pathol 167(2):395–407. https://doi.org/10.1016/S0002-9440(10)62984-7

    Article  CAS  Google Scholar 

  • Srinivasan M, Sudheer AR, Pillai KR, Kumar PR, Sudhakaran PR, Menon VP (2007) Modulatory effects of curcumin on gamma-radiation induced cellular damage in primary culture of isolated rat hepatocytes. Environ Toxicol Pharmacol 24(2):98–105. https://doi.org/10.1016/j.etap.2007.03.001

    Article  CAS  Google Scholar 

  • Suzuki YJ, Forman HF, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22(1–2):269–285. https://doi.org/10.1016/S0891-5849(96)00275-4

    Article  CAS  Google Scholar 

  • Tietze HW (2004) Spirulina micro food macro blessing. In: Harald W, 4th edn. Tietz Publishing, Australia

  • Trevisan R, Dodesini AR, Lepore G (2006) Lipids and renal disease. J Am Soc Nephrol 17(4 suppl 2):S145–S147. https://doi.org/10.1681/ASN.2005121320

    Article  CAS  Google Scholar 

  • Uchiyama M, Mihara M (1978) Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86(1):271–278. https://doi.org/10.1016/0003-2697(78)90342-1

    Article  CAS  Google Scholar 

  • Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K (2016) The antioxidant, immunomodulatory, and anti-inflammatory activities of spirulina: an overview. Arch Toxicol 90(8):1817–1840. https://doi.org/10.1007/s00204-016-1744-5

    Article  CAS  Google Scholar 

  • Zhang B, Zhang X (2013) Separation and nanoencapsulation of antitumor polypeptide from Spirulina platensis. Biotechnol Prog 29(5):1230–1238. https://doi.org/10.1002/btpr.1769

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the help of Dr. Sahar Samir Abdel-Rahman, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, for carrying out the histological examinations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maha M. Aziz.

Ethics declarations

The study was conducted in accordance with the guidelines set by the EEC regulations (Revised Directive 86/609/EEC) and approved by the Ethics Committee for Experimental and Clinical Studies at Faculty of Pharmacy, Cairo University (PT.1086).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, M.M., Eid, N.I., Nada, A.S. et al. Possible protective effect of the algae spirulina against nephrotoxicity induced by cyclosporine A and/or gamma radiation in rats. Environ Sci Pollut Res 25, 9060–9070 (2018). https://doi.org/10.1007/s11356-017-1146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-1146-0

Keywords

Navigation