Skip to main content

Advertisement

Log in

Towards a better understanding of the therapeutic applications and corresponding mechanisms of action of honey

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Honey is a bee-derived supersaturated solution composed of complex contents mainly glucose, fructose, amino acids, vitamins, and minerals. Composition of honey may vary due to the difference in nectar, season, geography, and storage condition. Honey has been used since times immemorial in folk medicine and has recently been rediscovered as an excellent therapeutic agent. In the past, honey was used for a variety of ailments without knowing the scientific background and active ingredients of honey. Today, honey has been scientifically proven for its antioxidant, regulation of glycemic response, antitumor, antimicrobial, anti-inflammatory, and cardiovascular potentiating agent. It can be used as a wound dressing and healing substance. Honey is different in color, flavor, sensory perception, and medical response. Apart from highlighting the nutritional facts of honey, we collected the finding of the published literature to know the mechanism of action of honey in different diseases. This review covers the composition, physiochemical characteristics, and some medical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abubakar M, Abdullah WZ, Sulaiman SA, Suen AB (2012) A review of molecular mechanisms of the anti-leukemic effects of phenolic compounds in honey. Int J Mol Sci 13:15054–15073

    Article  CAS  Google Scholar 

  • Abuharfeil N, Al-Oran R, Abo-Shehada M (1999) The effect of bee honey on the proliferative activity of human B- and T lymphocytes and the activity of phagocytes. Food Agri Immunol 11:169–177

    Article  CAS  Google Scholar 

  • Agrawal OP, Pachauri A, Yadav H, Urmila J, Goswamy HM, Chaperwal A, Bisen PS, Prasad GBKS (2007) Subjects with impaired glucose tolerance exhibit a high degree of tolerance to honey. J Med Food 10:473–478

    Article  CAS  Google Scholar 

  • Ahmad A, Azim MK, Mesaik MA, Khan RA (2008) Natural honey modulates physiological glycemic response compared to simulated honey and D-glucose. J Food Sci 73:H165–H167

    Article  CAS  Google Scholar 

  • Alcaraz A, Kelly J (2000) Treatment of an infected venous leg ulcer with honey dressings. Br J Nurs 11(13):859–860 862, 864–866

    Article  Google Scholar 

  • Al-Mamary M, Al-Meeri A, Al-Habori M (2002) Antioxidant activities and total phenolics of different types of honey. Nutr Res 22:1041–1047

    Article  CAS  Google Scholar 

  • Anoukoum T, Attipou KK, Ayite A et al (1998) Le traitment des gangrenes perineales et de la sphere genitale par du miel. Tunis Med 76:132–135

    CAS  Google Scholar 

  • Alvarez-Suarez JM, Tulipani S, Romandini S, Bertoli E, Battino M (2010) Contribution of honey in nutrition and human health: a review. Mediterr J Nutr Metab 3:15–23

    Article  Google Scholar 

  • Al-Waili NS, Haq A (2004) Effect of honey on antibody production against thymus-dependent and thymus-independent antigens in primary and secondary immune responses. J Med Food 7:491–494

    Article  CAS  Google Scholar 

  • Al-Waili NS, Boni NS (2003) Natural honey lowers plasma prostaglandin concentrations in normal individuals. J Med Food 6:129–133

    Article  CAS  Google Scholar 

  • Al-Waili NS (2005) Mixture of honey, bees wax and olive oil inhibits growth of Staphylococcus aureus and Candida albicans. Arch Med Res 36:10–13

    Article  CAS  Google Scholar 

  • Al-Waili NS, Salom K, Butler G, Al Ghamdi AA (2011) Honey and microbial infections: a review supporting the use of honey for microbial control. J Med Food 14(10):1079–1096

    Article  CAS  Google Scholar 

  • Al-Waili NS (2003) Effects of daily consumption of honey solution on hematological indices and blood levels of minerals and enzymes in normal individuals. J Med Food 6:135–140

    Article  CAS  Google Scholar 

  • Al-Waili NS (2004) Natural honey lowers plasma glucose, C-reactive protein, homocysteine, and blood lipids in healthy, diabetic, and hyperlipidemic subjects: comparison with dextrose and sucrose. J Med Food 7:100–107

    Article  CAS  Google Scholar 

  • Arvanitoyannis IS, Gotsiou P, Lydrakis-Simantiris N, Kefalas P (2005) Novel quality control method in conjunction with chemometrics (multivariate analysis) for detecting honey authenticity. Crit Rev Food Sci 45:193–203

    Article  CAS  Google Scholar 

  • Barui A, Banerjee P, Das RK et al (2011) Immunohistochemical evaluation of p63, e-cadherin, collagen I and III expression in lower limb wound healing under honey. Evid Based Complement Alternat Med 239864

  • Beretta G, Granata P, Ferrero M (2005) Standardization of antioxidant properties of honey by a combination of spectrophotometric/fluorimetric assays and chemometrics. Anal Chim Acta 533:185–191

    Article  CAS  Google Scholar 

  • Beretta G, Orioli M, Facino RM (2007a) Antioxidant and radical scavenging activity of honey in endothelial cell cultures (EA.hy926). Planta Med 73(11):1182–1189

    Article  CAS  Google Scholar 

  • Beretta G, Orioli M, Facino RM (2007b) Antioxidant and radical scavenging activity of honey in endothelial cell cultures (EA.hy926). Planta Med 73(11):1182–1189

    Article  CAS  Google Scholar 

  • Bergman A, Yanai J, Weiss J, Bell D, David MP (1983) Acceleration of wound healing by topical application of honey. An animal model. Am J Surg 145:374–376

    Article  CAS  Google Scholar 

  • Bestwick CS, Milne L, Duthie SJ (2007) Kaempferol induced inhibition of HL-60 cell growth results from a heterogeneous response, dominated by cell cycle alterations. Chem Biol Interact 170:76–85

    Article  CAS  Google Scholar 

  • Bhandari B, D’Arcy B, Kelly C (1999) Rheology and crystallization kinetics of honey: present status. Int J Food Prop 2:217–226

    Article  CAS  Google Scholar 

  • Bilsel Y, Bugra D, Yamaner S, Bulut T, Cevikbas U, Turkoglu U (2002) Could honey have a place in colitis therapy? Effects of honey, prednisolone, and disulfiram on inflammation, nitric oxide, and free radical formation. Dig Surg 19(4):306–311

  • Bogdanov S, Ruoff K, Persano Oddo L (2007) Physico-chemical methods for the characterisation of unifloral honeys: a review. Apidologie 35:S4–S17

    Article  Google Scholar 

  • Bogdanov S (1997) Nature and origin of the antibacterial substances in honey LWTFood. Sci Technol 30:748–753

    CAS  Google Scholar 

  • Bogdanov S (2006) Contaminants of bee products. Apidologie 38:1–18

    Article  CAS  Google Scholar 

  • Bogdanov S, Jurendic T, Sieber R, Gallmann P (2008) Honey for nutrition and health: a review. J Amer Coll Nutr 27:677–689

    Article  CAS  Google Scholar 

  • Bogdanov S, Martin P, Lullmann C (1997) Harmonised methods of the European Honey Commission. Apidologie 28:1–59

    Google Scholar 

  • Brady NF, Molan PC, Harfoot CG (1997) The sensitivity of dermatophytes to the antimicrobial activity of manuka honey and other honey. J Pharm Sci 2:1–3

    Google Scholar 

  • Burlando B, Cornara L (2013) Honey in dermatology and skin care: a review. J Cosmetic Dermatol 12:306–313

    Article  Google Scholar 

  • Braithwaite I, Hunt A, Riley J et al (2015) Randomised controlled trial of topical kanuka honey for the treatment of rosacea. BMJ Open 5:e007651

    Article  Google Scholar 

  • Carlstrom J, Symons D, Ching T, Wu Bruno RS, Sheldon E, Litwin JT (2007) A quercetin supplemented diet does not prevent cardiovascular complications in spontaneously hypertensive rats. J Nutr 137:628–633

    CAS  Google Scholar 

  • Castro-Várquez L, Pérez-Coello MS, Cabezudo MD (2003) Analysis of volatile compounds of rosemary honey comparison of different extraction techniques. Chromatographia 57:227–233

    Article  Google Scholar 

  • Cavallo P, Proto MC, Patruno C et al (2008) The first cosmetic treatise of history a female point of view. Int J Cosmet Sci 30:79–86

    Article  CAS  Google Scholar 

  • Chand N, Faheem H, Khan RU, Qureshi MS, Alhidary IA, Abudabos AM (2016) Anticoccidial effect of mananoligosacharide against experimentally induced coccidiosis in broiler. Environ Sci Pollut Res 23:14414–14421

    Article  CAS  Google Scholar 

  • Chen YJ, Shiao MS, Wang SY (2001) The antioxidant caffeic acid phenylethyl ester induces apoptosis associated with selective scavanging of hydrogen peroxide in human leukemic HL cells. Anti-Cancer Drugs 12:143–149

  • Chen JH, Shao Y, Huang MT, Chin CK, Ho CT (2001) Inhibitory effect of caffeic acid phenethyl ester, an antioxidant from propolis, on inducing apoptosis in human leukemic HL-60 cells. J Agric Food Chem 49:5615–5619

    Article  CAS  Google Scholar 

  • Cheng AC, Huang TC, Lai CS, Pan MH (2005) Induction of apoptosis by luteolin through cleavage of Bcl-2 family in human leukemia HL-60 cells. Eur J Pharmacol 509:1–10

    Article  CAS  Google Scholar 

  • Cheng H, Straub SG, Sharp GW (2003) Protein acylation in the inhibition of insulin secretion by norepinephrine, somatostatin, galanin, and PGE2. Amer J Physiol: Endocrinol Metabol 285:E287–E294

    CAS  Google Scholar 

  • Chepulis LM (2007) The effect of honey compared to sucrose, mixed sugars, and a sugar-free diet on weight gain in young rats. J Food Sci 72:S224–S229

    Article  CAS  Google Scholar 

  • Chow J (2002) Probiotics and prebiotics: a brief overview. J Ren Nutr 12:76–86

    Article  Google Scholar 

  • Cooper R (2007) Honey in wound care: antibacterial properties GMS Krankenhaushygiene Interdisziplinär 2: 1–3

  • Cortés ME, Pilar V, Montenegro G (2011) The medicinal value of honey: a review on its benefis to human health, with a special focus on its effects on glycemic regulation. Cien Inv Agr 38(2):303–317

    Article  Google Scholar 

  • Cooper RA, Molan PC, Harding KG (2002) The sensitivity to honey of gram-positive cocci of clinical significance from wounds. J Appl Microbiol 93:857–863

    Article  CAS  Google Scholar 

  • Critchfield JW, Butera ST, Folks TM (1996) Inhibition of HIV activation in latently infected cells by flavonoid compounds. AIDS Res Hum Retrovirus 12:39–46

    Article  CAS  Google Scholar 

  • Csokay B, Prajda N, Weber G, Olah E (1997) Molecular mechanisms in the ntiproliferative action of quercetin. Life Sci 60:2157–2163

    Article  CAS  Google Scholar 

  • Cushnie T, Lamb A (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26:343–356

    Article  CAS  Google Scholar 

  • Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, Ritchey JK, Young MA, Lamprecht T, McLellan MD et al (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481:506–510

  • Dunford C, Cooper R, Molan PC (2000) Using honey as a dressing for infected skin lesions. Nurs Times 96:7–9

    CAS  Google Scholar 

  • Edgar JA, Roeder EL, Molyneux RJ (2002) Honey from plants containing pyrrolizidine alkaloids: a potential threat to health. J Agric Food Chem 50:2719–2730

    Article  CAS  Google Scholar 

  • Efem SEE (1988) Clinical observations on the wound healing properties of honey. Br J Surg 75:679–681

    Article  CAS  Google Scholar 

  • Eteraf-Oskouei T, Najafi M (2013) Traditional and modern uses of natural honey in human diseases: a review. Iran J Basic Med Sci 16:731–742

    Google Scholar 

  • Fang XK, Gao J, Zhu DN (2008) Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci 82:615–622

    Article  CAS  Google Scholar 

  • Fingleton JS, Cave D, Brinded N et al (2013) Topical kanuka honey for the treatment of rosacea. Focus Altern Complement Ther 18:221–222

  • Fredes C, Montenegro G (2006) Contenido de metales pesados y otros elementos traza en mieles de abeja en Chile. Ciencia e Investigación Agraria 33:57–66

    Google Scholar 

  • French VM, Cooper MA, Molan PC (2005) Antibacterial activity of honey against coagulase-negative staphylococci. J Antimicrob Chemother 56:228–231

    Article  CAS  Google Scholar 

  • Fresco P, Borges F, Diniz C (2006) Marques, M New insights on the anticancer properties of dietary polyphenols. Med Res Rev 26:747–766

    Article  CAS  Google Scholar 

  • Garcia A, Soto D, Romo C (1986) La miel de abejas, composición química, propiedades y usos industriales. Revista Chilena de Nutrición 14:185–191

    Google Scholar 

  • Gui-Rong L, Wang HB, Qin GW, Jin MW, Tang Q, Sun HY, Du XL, Deng XL, Zhang XH, Chen JB, Chen L (2008) Acacetin, a natural flavone, selectively inhibits human atrial repolarization potassium currents and prevents atrial fibrillation in dogs. Circulation 117:2449–2457

  • Hagiwara Y, Kasukabe T, Kaneko Y, Niitsu N, Okabe-Kado J (2010) Ellagic acid, a natural polyphenolic compound, induces apoptosis and potentiates retinoic acid-induced differentiation of human leukemia HL-60 cells. Int J Hematol 92:136–143

    Article  CAS  Google Scholar 

  • Halawani E, Shohayeb M (2011) Survey of the antimicrobial activity of Saudi and some international honeys. J Microbiol Antimicrob 3:94–101

    Google Scholar 

  • Halstead FD, Webber MA, Rauf M, Dryden M, Oppenhelm BA (2016) In vitro activity of an engineered honey, medical-grade honeys, and antimicrobial wound dressings against biofilm-producing clinical bacterial isolates. J Wound Care 25(2):93–94

  • Havsteen BH (2002) The biochemistry and medical significance of the flavonoids. Pharmacol Ther 96:67–202

    Article  CAS  Google Scholar 

  • Hayes GR, Lockwood DH (1987) Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide. Proceed Nat Acad Sci USA 84:8115–8119

    Article  CAS  Google Scholar 

  • Holt S (2015) A New Zealand topical kanuka honey product can treat rosacea and reduce antibiotic resistance. Adv Integr Med https://doi.org/10.1016/j.aimed.2015.08.004

  • Husain SR, Cillard J, Cillard P (1987) Hydroxy radical scavenging activity of flavonoids. Phytochemistry 26:2489–2492

    Article  CAS  Google Scholar 

  • Jaganathan SK, Mandal M (2009) Antiproliferative effects of honey and of its polyphenols: a review. J Biom Biotechnol Article ID 830616, 13 pages https://doi.org/10.1155/2009/830616

  • Jerković J, Mastelić J, Marijanović ZA (2006) Variety of volatile compounds as markers in unifloral honey from dalmatian sage (Salvia officinalis L). Chem Biodivers 3:1307–1316

    Article  Google Scholar 

  • Jin UH, Song KH, Motomura M, Suzuki I, Gu YH, Kang YJ, Moon TC, Kim CH (2008) Caffeic acid phenethyl ester induces mitochondria-mediated apoptosis in human myeloid leukemia U937 cells. Mol Cell Biochem 310:43–48

    Article  CAS  Google Scholar 

  • Kandaswani C, Middleton E (1994) Free radical scavenging and antioxidant activity of plant flavonoids. Adv Exp Med Biol 336:351–376

    Article  Google Scholar 

  • Kang T, Liang N (1997) Studies on the inhibitory effects of quercetin on the growth of HL-60 leukemia cells. Biochem Pharmacol 54:1013–1018

    Article  CAS  Google Scholar 

  • Kaskonienė V, Venskutonis PR, Čeksterytė V (2008) Composition of volatile compounds of honey of various floral origin and beebread collected in Lithuania. Food Chem 111:988–997

    Article  CAS  Google Scholar 

  • Khalil MI, Sulaiman SA (2010) The potential role of honey and its polyphenols in preventing heart diseases: a review. Afr J Tradit Complement Altern Med 7:315–321

    CAS  Google Scholar 

  • Kilicoglu B, Kismet K, Koru O et al (2006) The scolicidal effects of honey. Adv Ther 23:1077–1083

    Article  Google Scholar 

  • Kim DS, Ha KC, Kwon DY, Kim MS, Kim HR, Chae SW, Chae HJ (2008) Kaempferol protects ischemia/reperfusion-induced cardiac damage through the regulation of endoplasmic reticulum stress. Immunopharmacol Immunotoxicol 30:257–270

    Article  CAS  Google Scholar 

  • Ko W, Kang T, Lee S, Kim Y, Lee B (2002) Effects of luteolin on the inhibition of proliferation and induction of apoptosis in human myeloid leukaemia cells. Phytother Res 16:295–298

    Article  CAS  Google Scholar 

  • Kwakman PHS, Te Velde AA, de Boer L, Speijer D (2010) Vandenbroucke-Grauls, CMJE; Zaat, SAJ how honey kills bacteria. FASEB J 24:2576–2582

    Article  CAS  Google Scholar 

  • Lee TJ, Kim OH, Kim YH, Lim JH, Kim S, Park JW, Kwon TK (2006) Quercetin arrests G2/M phase and induces caspase-dependent cell death in U937 cells. Cancer Lett 240:234–242

    Article  CAS  Google Scholar 

  • Lee WR, Shen SC, Lin HY, Hou WC, Yang LL, Chen YC (2002) Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca2+-dependent endonuclease. Biochem Pharmacol 63:225–236

    Article  CAS  Google Scholar 

  • Manyi-Loh CE, Clarke AM, Ndip RN (2001) Identification of volatile compounds in solvent extracts of honeys produced in South Africa. Afr J Agric Res 6:4327–4334

    Google Scholar 

  • Middleton E Jr, Chithan K (1993) The impact of plant flavonoids on mammalian biology: implications for immunity, inflammation and cancer In: Harborne JB, editor the flavonoids: advances in research since 1986. Chapman and Hall P, London, UK, pp 145–166

    Google Scholar 

  • Mphande ANG, Killowe C, Phalira S, Jones HW, Harrison WJ (2007) Effect of honey and sugar dressings on would healing. J Wound Healing 16:317–319

    CAS  Google Scholar 

  • Selway JWT (1986) Antiviral activity of flavones and flavans In: Cody V, Middleton E, Harborne JB, editors Plant flavonoids in biology and medicine: biochemical, pharmacological and structure activity relationships New York: Alan R Liss, Inc p 75

  • Middleton E, Kandaswami C, Theoharides TC (2000) The effects of plants flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev 52:673–751

    CAS  Google Scholar 

  • Mirzoeva OK, Calder PC (1996) The effect of propolis and its components on eicosanoid production during the inflammatory response. Prostaglandins Leukot Fatty Acids 55:441–449

    Article  CAS  Google Scholar 

  • Molan PC, Russell KM (1988) Non-peroxide antibacterial activity in some NewZealand honeys. J Api Res 27:62–67

    Article  Google Scholar 

  • Molan PC (1999) Why honey is effective as a medicine 1 its use in modern medicine. Bee World 80:80–92

    Article  Google Scholar 

  • Molan PC (1998) A brief review of the use of honey as a clinical dressing. Aust J Wound Mange 6:148–158

    Google Scholar 

  • Molan PC (2006) The evidence supporting the use of honey as a wound dressing. Int J Low Extrem Wounds 5:40–54

    Article  CAS  Google Scholar 

  • Molan PC (1997) Honey as an antimicrobial agent In Mizrahi A, Lensky Y (eds): “Bee Products: Properties, Applications and Apitherapy” New York: Plenum Press, pp 27–37

  • Molan PC (1992) The antibacterial activity of honey. Bee World 73:5–28

    Article  Google Scholar 

  • Molan PC (2001) Why honey is effective as a medicine 2 the scientific explanation of its effects. Bee World 82:22–40

    Article  Google Scholar 

  • Montenegro G, Fredes C (2008) Relación entre el origen flral y el perfi de elementos minerales en mieles chilenas Gayana Botánica 65: 123–126

  • Montenegro G, Salas F, Peña RC, Pizarro R (2009) Actividad antibacteriana y antifúngica de mieles monoflrales de Quillaja saponaria, especie endémica de Chile Φyton 78: 141–146

  • Nagai T, Inoue R (2004) Preparation and functional properties of water extract and natural flavones overcome tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein resistance of tumors by down-regulation of c-FLIP protein and up-regulation of TRAIL receptor 2 expression. J Biol Chem 287:641–649

    Google Scholar 

  • Naz S, Idris M, Khalique MA, Zia-ur-Rahman IA, Alhidary MM, Abdelrahman RU, Khan N, Chand UF, Ahmad S (2016) The activity and use of zinc in poultry diet. World’s Poult Sci J 72:159–167

  • Olaitan PB, Adeleke OE, Ola IO (2007) Honey: a reservoir for micro-organisms and an inhibitory agent for microbes. Afr Health Sci 7:159–165

    Google Scholar 

  • Ong KC, Khoo HE (1996) Insulinomimetic effects of myricetin on lipogenesis and glucose transport in rat adipocytes but not glucose transport translocation. Biochem Pharmacol 51:423–429

    Article  CAS  Google Scholar 

  • Orsolic N, Knezevic A, Sver L, Terzic S, Hackenberger BK, Basic I (2003) Inflence of honey bee products on transplantable murine tumours. Vet Com Oncologia 1:216–226

    Article  CAS  Google Scholar 

  • Osmojasola PF (2002) The antibacterial effect of honey on bacteria isolated from infected wound in Ilorin Nigeria. Niger Soc Exp Biol J 2:109–112

    Google Scholar 

  • Oumeish OY (1999) Traditional arabic medicine in dermatology. Clin Dermatol 17:13–20

    Article  CAS  Google Scholar 

  • Plutowska B, Chmiel T, Dymerski T, Wardencki W (2011) A headspace solid-phase microextraction method development and its application in the determination of volatiles in honeys by gas chromatography. Food Chem 126:1288–1298

    Article  CAS  Google Scholar 

  • Randi L, Edwards LT, Litwin SE, Rabovsky A, Symons JD, Jalili T (2007) Quercetin reduces blood pressure in hypertensive subjects. J Nutr 137:2405–2411

    Google Scholar 

  • Ranzato E, Martinotti S, Burlando B (2012) Epithelial mesenchymal transition traits in honey-driven keratinocyte wound healing: comparison among different honeys. Wound Repair Regen 20:778–785

    Article  Google Scholar 

  • Richards L (2002) Healing infected recalcitrant ulcers with antibacterial honey Paper presented the 4th Australian Wound Management Association Conference, Adelaide, Australia

  • Robak J, Gryglewski RJ (1988) Flavonoids are scavengers of superoxide anion. Biochem Pharmacol 37:83–88

    Article  Google Scholar 

  • Russell KM, Molan PC, Wilkins AL, Holland PT (1990) Identification of some antibacterial constituents of New Zealand manuka honey. J Agric Food Chem 38:10–13

    Article  CAS  Google Scholar 

  • Shamala TR, Shri Y, Jyothi Saibaba P (2000) Stimulatory effect of honey on multiplication of lactic acid bacteria under in vitro and in vivo conditions. Lett Appl Microbiol 30:453–455

    Article  CAS  Google Scholar 

  • Shin JS, Kim KS, Kim MB, Jeong JH, Kim BK (1999) Synthesis and hypoglycemic effect of chrysin derivatives bioorgan. Med Chem Lett 9:869–874

    Article  CAS  Google Scholar 

  • Siddiqui IR (1970) The sugars of honey. Adv Carbohyd Chem 25:285–309

    CAS  Google Scholar 

  • Simon A, Traynor K, Santos K, Blaser G, Bode U, Molan P (2009) Medical honey for wound care—still the ‘latest resort’? Evid based complement. Alternat Med 6(2):165–173

    Google Scholar 

  • Smukler S, Tang L, Wheeler M, Salapatek A (2002) Exogenous nitric oxide and endogenous glucose-stimulated β-cell nitric oxide augment insulin release. Diabetes 51:3450–3460

    Article  CAS  Google Scholar 

  • Stewart J (2002) Therapeutic honey used to reduce pain and bleeding associated with dressing changes paper presented at the 4th Australian wound management association conference, Adelaide, Australia

  • Tonks AJ, Cooper RA, Jones KP, Blair S, Parton J, Tonks A (2003) Honey stimulates inflmmatory cytokine production from monocytes. Cytokine 21:242–247

    Article  CAS  Google Scholar 

  • Tonk AJ, Dudley E, Porter NG, Parton J, Brazier J, Smith EL, Tonks A (2007) A 5.8kDa component of manoka honey stimulates immune cells via TLR4. J Leukoc Biol 82(5):1147–1155

  • Umesh Hebbar H, Rastogi NK (2008) Subramanian R properties of dried and intermediate moisture honey products: a review. Int J Food Prop 11:804–819

    Article  Google Scholar 

  • Valdés A, Simó C, Ibáñez C, Rocamora-Reverte L, Ferragut JA, García-Cañas V, Cifuentes A (2012) Effect of dietary polyphenols on K562 leukemia cells: a foodomics approach. Electrophoresis 33:2314–2327

    Article  CAS  Google Scholar 

  • van den Berg AJ, van den Worm E, van Uffrd HC, Halkes SB, Hoekstra MJ, Beukelman CJ (2008) An in vitro examination of the antioxidant and anti-inflmmatory properties of buckwheat honey. J Wound Care 17(4):172–178

    Article  Google Scholar 

  • van Zuuren EJ, Kramer S, Carter B et al (2011) Interventions for rosacea. Cochrane Database Syst Rev 3:CD003262

  • Viuda-Martos M, Ruiz-Navajas Y, FernándezLópez J, Pérez-Alvarez JA (2008) Functional properties of honey, propolis, and royal jelly. J Food Sci 73:R117–R124

    Article  CAS  Google Scholar 

  • Vosloo MC (2005) Some factors affecting the digestion of glycaemic carbohydrates and the blood glucose response. J Family Ecol Consumer Sci 33:1–9

    Google Scholar 

  • Wang IK, Lin-Shiau SY, Lin JK (1999) Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Can 35:1517–1525

    Article  CAS  Google Scholar 

  • Wang XH, Andrae L, Engeseth NJ (2002) Antimutagenic effect of various honeys and sugars against Trp-p-1. J Agri Food Chem 50:6923–6928

    Article  CAS  Google Scholar 

  • Watanabe K, Kanno S, Tomizawa A, Yomogida S, Ishikawa M (2012) Acacetin induces apoptosis in human T cell leukemia Jurkat cells via activation of a caspase cascade. Oncol Rep 27:204–209

    CAS  Google Scholar 

  • Weston RJ, Mitchell KR, Allen KL (1999) Antibacterial phenolic components of New Zealand manuka honey. Food Chem 64:295–301

    Article  CAS  Google Scholar 

  • White JW (1978) Honey. Adv Food Res 24:287–375

    Article  CAS  Google Scholar 

  • White JW, Subers MH, Schepartz AI (1963) The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim Biophys Acta 73:57–70

    Article  CAS  Google Scholar 

  • Wijesinghe M, Weatherall M, Perrin K (2009) Beasley R honey in the treatment of burns: a systematic review and meta-analysis of its efficy. NZ. Med J 122:47–60

    Google Scholar 

  • Woo KJ, Jeong YJ, Park JW, Kwon TK (2004) Chrysin-induced apoptosis is mediated through caspase activation and Akt inactivation in U937 leukemia cells. Biochem Biophys Res Commun 325:1215–1222

    Article  CAS  Google Scholar 

  • Woo KJ, Jeong YJ, Inoue H, Park JW, Kwon TK (2005) Chrysin suppresses lipopolysacherideinduced cyclooxygenase-2 expression through inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity. FEBS Lett 579:705–711

  • Xu YC, Yeung DKY, Man RYK, Leung SWS (2006) Kaempferol enhances endothelium-independent and dependent relaxation in the porcine coronary artery. Mol Cell Biochem 287:61–67

    Article  CAS  Google Scholar 

  • Yaghoobi R, Kazerouni A, Kazerouni O (2013) Evidence for clinical use of honey in wound healing as an anti-bacterial, anti-inflammatory anti-oxidant and anti-viral agent: a review. Jundishapur J Nat Pharm Prod 8(3):100–104

    Article  Google Scholar 

Download references

Funding

This study was supported by King Saud University, Deanship of Scientific Research, College of Food and Agriculture Sciences, Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rifat Ullah Khan.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, R.U., Naz, S. & Abudabos, A.M. Towards a better understanding of the therapeutic applications and corresponding mechanisms of action of honey. Environ Sci Pollut Res 24, 27755–27766 (2017). https://doi.org/10.1007/s11356-017-0567-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0567-0

Keywords

Navigation