Adán Á, Viñuela E, Bengochea P, Budia F, Del Estal P, Aguado P, Medina P (2011) Lethal and sublethal toxicity of fipronil and imidacloprid on Psyttalia concolor (Hymenoptera: Braconidae). J. Econ. Entomol. 104(5):1541–1549
Ahmad M, Rafiq M, Arif MI, Sayyed AH (2011) Toxicity of some commonly used insecticides against Coccinella undecimpunctata (Coleoptera: Coccinellidae). Pakistan J Zool 43(6):1161–1165
CAS
Google Scholar
Ahmed MAI, Eraky E-SA, Mohamed MF, Soliman A-AS (2015) Potential toxicity assessment of novel selected pesticides against sand termite, Psammotermes hypostoma Desneux workers (Isoptera: Rhinotermitidae) under field conditions in Egypt. J Plant Protect Res 55(2):193–197
CAS
Google Scholar
Al-Sarar A, Abobakr Y, Bayoumi AE, Hussein H (2015) Cytotoxic and genotoxic effects of abamectin, chlorfenapyr, and imidacloprid on CHOK1 cells. Environ Sci Pollut Res 22:17041–17052
CAS
Google Scholar
Alburaki M, Boutin S, Mercier P-L, Loublier Y, Chagnon M, Derome N (2015) Neonicotinoid-coated Zea mays seeds indirectly affect honeybee performance and pathogen susceptibility in field trials. PLoS One 10(5):e0125790
Google Scholar
Alburaki M, Cheaib B, Quesnel L, Mercier P-L, Chagnon M, Derome N (2017) Performance of honeybee colonies located in neonicotinoid-treated and untreated cornfields in Quebec. J Appl Entomol 141(1–2):112–121
CAS
Google Scholar
Ali S, Mohamed A-R, Ali H, Elbohi K (2016) Sublethal effect of fipronil exposure on liver and kidney tissues with evaluation of the recovery ability of Japanese quail (Coturnix japonica). Jap J Vet Res 64:S131–S138
Google Scholar
Alim MA, Lim U (2014) Ecotoxicological effect of insecticides on Ooencyrtus nezarae (Hymenoptera: Encyrtidae) reared from refrigerated and unrefrigerated Riptortus pedestris (Hemiptera: Alydidae) host. Biocontrol Sci. Technol. 24(2):133–144
Alkassab AT, Kirchner WH (2016) Impacts of chronic sublethal exposure to clothianidin on winter honeybees. Ecotoxicology 25(5):1000–1010
CAS
Google Scholar
Amirzade N, Izadi H, Jalali MA, Zohdi H, Ni X (2014) Evaluation of three neonicotinoid insecticides against the common pistachio psylla, Agonoscena pistaciae, and its natural enemies. J Ins Sci 14(1):35–35
Google Scholar
Annabi A, Dhouib I-B (2015) Mechanisms of imidacloprid-induced alteration of hypothalamic-pituitary-adrenal (HPA) axis after subchronic exposure in male rats. Recent Adv Biol Med 1:51–59
Google Scholar
Ansoar-Rodríguez Y, Christofoletti C, Marcato A, Correia J, Bueno O, Malaspina O, Fontanetti C (2015) Genotoxic potential of the insecticide imidacloprid in a non-target organism (Oreochromis niloticus-Pisces). J Environ Protect 6:1360
Google Scholar
Ansoar-Rodríguez Y, Christofoletti CA, Correia JE, de Souza RB, Moreira-de-Sousa C, Marcato ACC, Bueno OC, Malaspina O, ECM S-Z, Fontanetti CS (2016) Liver alterations in Oreochromis niloticus (Pisces) induced by insecticide imidacloprid: histopathology and heat shock protein in situ localization. J Environ Sci Health B 51(12):881–887
Google Scholar
Arce AN, David TI, Randall EL, Ramos Rodrigues A, Colgan TJ, Wurm Y, Gill RJ (2016) Impact of controlled neonicotinoid exposure on bumblebees in a realistic field setting. J Appl Ecol 54(4):1199–1208
Google Scholar
Arena M, Sgolastra F (2014) A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 23(3):324–334
CAS
Google Scholar
ArfatY, MahmoodN, TahirM, RashidM, AnjumS, ZhaoF, LiD-J, SunY-L, HuL, ZhihaoC and others. (2014). Effect of imidacloprid on hepatotoxicity and nephrotoxicity in male albino mice. Toxicol Rep1:554–561
Arslan M, Sevgiler Y, Buyukleyla M, Yardimci M, Yilmaz M, Rencuzogullari E (2016) Sex-related effects of imidacloprid modulated by piperonyl butoxide and menadione in rats. Part II: genotoxic and cytotoxic potential. Drug Chem Toxicol 39:81–86
CAS
Google Scholar
Aslund MW, Winchell M, Bowers L, McGee S, Tang J, Padilla L, Greer C, Knopper L, Moore DRJ (2017) Ecological risk assessment for aquatic invertebrate communities exposed to imidacloprid due to labeled agricultural and non-agricultural uses in the United States. Environ Toxicol Chem 36(5):1375–1388
Google Scholar
Aufauvre J, Misme-Aucouturier B, Viguès B, Texier C, Delbac F et al (2014) Transcriptome analyses of the honeybee response to Nosema ceranae and insecticides. PLoS One 9(3):e91686
Google Scholar
Ayyanath M-M, Cutler GC, Scott-Dupree CD, Prithiviraj B, Kandasamy S, Prithiviraj K (2014) Gene expression during imidacloprid-induced hormesis in green peach aphid. Dose-Response 12:480–497
CAS
Google Scholar
Badawy MEI, Nasr HM, Rabea EI (2015) Toxicity and biochemical changes in the honey bee Apis mellifera exposed to four insecticides under laboratory conditions. Apidologie 46(2):177–193
CAS
Google Scholar
Bagri P, Kumar V, Sikka A (2016) Assessment of imidacloprid-induced mutagenic effects in somatic cells of Swiss albino male mice. Drug Chem Toxicol 39:412–417
CAS
Google Scholar
Bakker F (2016) Design and analysis of field studies with bees: a critical review of the draft EFSA guidance. Integr Environ Assess Manag 12(3):422–428
Google Scholar
Barbosa WF, Smagghe G, Guedes RNC (2015) Pesticides and reduced-risk insecticides, native bees and pantropical stingless bees: pitfalls and perspectives. Pest Manag Sci 71(8):1049–1053
CAS
Google Scholar
Baron GL, Raine NE, Brown MJ (2017) General and species-specific impacts of a neonicotinoid insecticide on the ovary development and feeding of wild bumblebee queens. Proc R Soc B 284(1854):20170123
Google Scholar
Beketov MA, Liess M (2008) Acute and delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environ Toxicol Chem 27(2):461–470
CAS
Google Scholar
Beloti VH, Alves GR, Araújo DFD, Picoli MM, Moral RA, Demétrio CGB, Yamamoto PT (2015) Lethal and sublethal effects of insecticides used on citrus, on the ectoparasitoid Tamarixia radiata. PLoS One 10(7):e0132128
Google Scholar
Benadi G, Blüthgen N, Hovestadt T, Poethke H-J (2013) When can plant-pollinator interactions promote plant diversity? Am. Nat 182(2):131–146
Google Scholar
Benuszak J, Laurent M, Chauzat M-P (2017) The exposure of honey bees (Apis mellifera; Hymenoptera: Apidae) to pesticides: room for improvement in research. Sci Total Environ 587–588:423–438
Bernhardt ES, Rosi EJ, Gessner MO (2017) Synthetic chemicals as agents of global change. Front Ecol Environ 15:84–90
Google Scholar
Bijleveld van Lexmond M, Bonmatin JM, Goulson D, Noome DA (2015) Worldwide integrated assessment on systemic pesticides. Environ Sci Pollut Res 22(1):1–4
Google Scholar
Blanken LJ, van Langevelde F, van Dooremalen C (2015) Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees. Proc R Soc B 282(1820):20151738
Google Scholar
Böhme F, Bischoff G, Zebitz CPW, Rosenkranz P, Wallner K (2017) Chronic exposure of honeybees, Apis mellifera (Hymenoptera: Apidae), to a pesticide mixture in realistic field exposure rates. Apidologie 48(3):353–363
Google Scholar
BonmatinJM, GiorioC, GirolamiV, GoulsonD, KreutzweiserDP, KrupkeC, LiessM, LongE, MarzaroM, MitchellEAD and others. (2015). Environmental fate and exposure; neonicotinoids and fipronil. Environ Sci Pollut Res22(1):35–67
Bostanian NJ, Hardman JM, Ventard E, Racette G (2005) The intrinsic toxicity of several neonicotinoids to Lygus lineolaris and Hyaliodes vitripennis, a phytophagous and a predacious mirid. Pest Manag Sci 61(10):991–996
CAS
Google Scholar
Bostanian NJ, Larocque N, Chouinard G, Coderre D (2001) Baseline toxicity of several pesticides to Hyaliodes vitripennis (Say) (Hemiptera: Miridae). Pest Manag Sci 57(11):1007–1010
CAS
Google Scholar
Botías C, David A, Hill EM, Goulson D (2016) Contamination of wild plants near neonicotinoid seed-treated crops, and implications for non-target insects. Sci Total Environ 566–567:269–278
Google Scholar
Botias C, David A, Horwood J, Abdul-Sada A, Nicholls E, Hill EM, Goulson D (2015) Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environ Sci Technol 49(21):12731–12740
CAS
Google Scholar
Bozsik A (2006) Susceptibility of adult Coccinella septempunctata (Coleoptera: Coccinellidae) to insecticides with different modes of action. Pest Manag Sci 62(7):651–654
CAS
Google Scholar
Brandt A, Gorenflo A, Siede R, Meixner M, Büchler R (2016) The neonicotinoids thiacloprid, imidacloprid, and clothianidin affect the immunocompetence of honey bees (Apis mellifera L.) J. Ins. Physiol. 86:40–47
CAS
Google Scholar
BredesonMM, ReeseRN, LundgrenJG. (2015). The effects of insecticide dose and herbivore density on tri-trophic effects of thiamethoxam in a system involving wheat, aphids, and ladybeetles. Crop Prot69(0):70–76
Breeze TD, Bailey AP, Balcombe KG, Potts SG (2011) Pollination services in the UK: how important are honeybees? Agric Ecosyst Environ 142(3–4):137–143
Google Scholar
Bro E, Devillers J, Millot F, Decors A (2016) Residues of plant protection products in grey partridge eggs in French cereal ecosystems. Environ Sci Pollut Res 23(10):9559–9574
CAS
Google Scholar
Buchmann SL, Nabhan GP (1997) The forgotten pollinators. Island Press, Washington, DC
Google Scholar
Budge GE, Garthwaite D, Crowe A, Boatman ND, Delaplane KS, Brown MA, Thygesen HH, Pietravalle S (2015) Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape. Sci Rep 5:12574
CAS
Google Scholar
Burgess ER, King BH (2016) Behavior and survival of the filth fly parasitoids Spalangia endius and Urolepis rufipes (Hymenoptera: Pteromalidae) in response to three granular house fly baits and components. Environ Entomol 45(6):1496–1504
CAS
Google Scholar
Burgess IVER, King BH (2015) Compatibility of the parasitoid wasp Spalangia endius (Hymenoptera: Pteromalidae) and insecticides against Musca domestica (Diptera: Muscidae) as evaluated by a new index. J Econ Entomol 108(3):986–992
CAS
Google Scholar
Burke AP (2016) A neurodevelopmental study of mice following in utero and early postnatal exposure to imidacloprid, a neonicotinoid pesticide. ProQuest Dissertations & Theses Global. ProQuest Dissertations Publishing 10195049. https://search.proquest.com/openview/aad9c7e69be6d2f1fbf07abba5746b1b/1.pdf?pq-origsite=gscholar&cbl=18750&diss=y. Accessed 12 July 2017
Caballero M, Ares I, Martinez M, Martinez-Larranaga M, Anadon A, Martinez M (2015) Fipronil induces CYP isoforms in rats. Food Chem Toxicol 83:215–221
CAS
Google Scholar
Calatayud-Vernich P, Calatayud F, Simó E, Suarez-Varela MM, Picó Y (2016) Influence of pesticide use in fruit orchards during blooming on honeybee mortality in 4 experimental apiaries. Sci Total Environ 541:33–41
CAS
Google Scholar
Calderón-SeguraM, RojasJ, BritoM, Tec Cab MdC, Calderón-Ezquerro M, Gómez-Arroyo S. (2015). Genotoxicity of the neonicotinoid insecticide Poncho (clothianidin) on CD1 mice based on alkaline comet and micronucleus assays. Toxicity and Hazard of Agrochemicals 113
Camp AA, Buchwalter DB (2016) Can’t take the heat: temperature-enhanced toxicity in the mayfly Isonychia bicolor exposed to the neonicotinoid insecticide imidacloprid. Aquat Toxicol 178:49–57
CAS
Google Scholar
Cardone A (2015) Imidacloprid induces morphological and molecular damages on testis of lizard (Podarcis sicula). Ecotoxicology 24(1):94–105
CAS
Google Scholar
Carrillo D, Peña JE, Rogers ME (2009) Relative susceptibility of Haeckeliania sperata (Hymenoptera: Trichogrammatidae) to pesticides used in citrus and ornamental systems in Florida. J Econ Entomol 102(3):905–912
Castillo Diaz JM, Martin-Laurent F, Beguet J, Nogales R, Romero E (2017) Fate and effect of imidacloprid on vermicompost-amended soils under dissimilar conditions: risk for soil functions, structure, and bacterial abundance. Sci Total Environ 579:1111–1119
CAS
Google Scholar
Cavallaro MC, Morrissey CA, Headley JV, Peru KM, Liber K (2017) Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors. Environ Toxicol Chem 36(2):372–382
CAS
Google Scholar
Čerevková A, Miklisová D, Cagáň Ľ (2017) Effects of experimental insecticide applications and season on soil nematode communities in a maize field. Crop Prot 92:1–15
Google Scholar
Chagnon M, Kreutzweiser D, Mitchell ED, Morrissey CA, Noome DA, Van der Sluijs JP (2015) Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environ Sci Pollut Res 22(1):119–134
CAS
Google Scholar
Chaguri J, Godinho A, Horta D, Goncalves-Rizzi V, Possomato-Vieira J, Nascimento R, Dias C (2016) Exposure to fipronil elevates systolic blood pressure and disturbs related biomarkers in plasma of rats. Environ Toxicol Pharmacol 42:63–68
CAS
Google Scholar
Chaimanee V, Evans JD, Chen Y, Jackson C, Pettis JS (2016) Sperm viability and gene expression in honey bee queens (Apis mellifera) following exposure to the neonicotinoid insecticide imidacloprid and the organophosphate acaricide coumaphos. J. Ins. Physiol. 89:1–8
CAS
Google Scholar
Charles-Tollerup JJ (2013) Resource provisioning as a habitat manipulation tactic to enhance the aphid parasitoid, Aphidius colemani Viereck (Hymenoptera: Braconidae: Aphidiinae), and the plant-mediated effects of a systemic insecticide, imidacloprid: University of California, Riverside. 151 p. http://escholarship.org/content/qt97w046gw/qt97w046gw.pdf. Accessed 12 July 2017
Charpentier G, Louat F, Bonmatin JM, Marchand PA, Vannier F, Locker D, Decoville M (2014) Lethal and sublethal effects of imidacloprid, after chronic exposure, on the insect model Drosophila melanogaster. Environ Sci Technol 48(7):4096–4102
CAS
Google Scholar
Chen X, Song M, Qi S, Wang C (2013) Safety evaluation of eleven insecticides to Trichogramma nubilale (Hymenoptera: Trichogrammatidae). J. Econ. Entomol. 106(1):136–141
Chen X-Q, Xiao Y, Wu L-B, Chen Y, Peng Y (2012) Imidacloprid affects Pardosa pseudoannulata adults and their unexposed offspring. Bull. Environ. Contam. Toxicol. 88(5):654–658
Chintalapati P, Katti G, Puskur RR, Nagella VK (2016) Neonicotinoid-induced resurgence of rice leaffolder, Cnaphalocrocis medinalis (Guénee). Pest Manag Sci 72(1):155–161
CAS
Google Scholar
Chrétien F, Giroux I, Thériault G, Gagnon P, Corriveau J (2017) Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field. Environ Pollut 224:255–264
Google Scholar
ChristenV, BachoferS, FentK. (2017). Binary mixtures of neonicotinoids show different transcriptional changes than single neonicotinoids in honeybees (Apis mellifera). Environ. Pollut. 220, Part B:1264-1270
Christen V, Mittner F, Fent K (2016) Molecular effects of neonicotinoids in honey bees (Apis mellifera). Environ. Sci. Technol. 50(7):4071–4081
CAS
Google Scholar
Cohen H, Horowitz AR, Nestel D, Rosen D (1996) Susceptibility of the woolly apple aphid parasitoid, Aphelinus mali (Hym.: Aphelinidae), to common pesticides used in apple orchards in Israel. Entomophaga 41:225–233
Cordero RJ, Bloomquist JR, Kuhar TP (2007) Susceptibility of two diamondback moth parasitoids, Diadegma insulare (Cresson) (Hymenoptera; Ichneumonidae) and Oomyzus sokolowskii (Kurdjumov) (Hymenoptera; Eulophidae), to selected commercial insecticides. Biol. Control 42(1):48–54
Costa LM, Grella TC, Barbosa RA, Malaspina O, Nocelli RCF (2015) Determination of acute lethal doses (LD50 and LC50) of imidacloprid for the native bee Melipona scutellaris Latreille, 1811 (Hymenoptera: Apidae). Sociobiology 62(4):578–582
Google Scholar
Crawley SE, Kowles KA, Gordon JR, Potter MF, Haynes KF (2016) Behavioral effects of sublethal exposure to a combination of β-cyfluthrin and imidacloprid in the bed bug, Cimex lectularius L. Pest Manag Sci 73(3):598–603
Google Scholar
CresswellJE, PageCJ, UygunMB, HolmberghM, LiY, WheelerJG, LaycockI, PookCJ, deIbarraNH, SmirnoffN and others. (2012). Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid). Zoology115(6):365–371
Crosby EB, Bailey JM, Oliveri AN, Levin ED (2015) Neurobehavioral impairments caused by developmental imidacloprid exposure in zebrafish. Neurotoxicology and Teratology 49:81–90
Cutler GC, Scott-Dupree CD (2014) A field study examining the effects of exposure to neonicotinoid seed-treated corn on commercial bumble bee colonies. Ecotoxicology 23(9):1755–1763
Google Scholar
Cutler GC, Scott-Dupree CD, Tolman JH, Harris CR (2006) Toxicity of the insect growth regulator novaluron to the non-target predatory bug Podisus maculiventris (Heteroptera:Pentatomidae). Biol Control 38(2):196–204
CAS
Google Scholar
Czerwinski MA, Sadd BM (2017) Detrimental interactions of neonicotinoid pesticide exposure and bumblebee immunity. J Exp Zool. https://doi.org/10.1002/jez.2087
Danfa A, Fall B, Valk HVD (1998) Acute toxicity tests with Bracon hebetor Say (Hymenoptera: Braconidae), using different locust control insecticides in the Sahel. In: Everts JW, Mbaye D, Barry O, Mullie W (eds) Environmental Side-Effects of Locust and Grasshopper Control: LOCUSTOX Project. FAO, Dakar, pp 117–136
DanieleG, GiroudB, JabotC, VuilletE (2017). Exposure assessment of selected pesticide residues in honeybees, beebread and beeswax from French beehives by liquid chromatography-quadrupole mass spectrometry. Environ Sci Pollut Res., in press. Doi: https://doi.org/10.1007/s11356-017-9227-7
David A, Botías C, Abdul-Sada A, Nicholls E, Rotheray EL, Hill EM, Goulson D (2016) Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environ Int 88:169–178
CAS
Google Scholar
de Arcaute C, Perez-Iglesias J, Nikoloff N, Natale G, Soloneski S, Larramendy M (2014) Genotoxicity evaluation of the insecticide imidacloprid on circulating blood cells of Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae) by comet and micronucleus bioassays. Ecol Indic 45:632–639
Google Scholar
De Cock A, De Clercq P, Tirry L, Degheele D (1996) Toxicity of diafenthiuron and imidacloprid to the predatory bug Podisus maculiventris (Heteroptera: Pentatomidae). Environ Entomol 25(2):476–480
de Barros AL, Bae JH, Borges CS, Rosa JL, Cavariani MM, Silva PV, Pinheiro PFF, Anselmo-Franci JA, Arena AC (2016) Perinatal exposure to insecticide fipronil: effects on the reproductive system in male rats. Reproduction, Fertility and Development 29:1130–1143
de Morais CR, Bonetti AM, Carvalho SM, de Rezende AAA, Araujo GR, Spanó MA (2016a) Assessment of the mutagenic, recombinogenic and carcinogenic potential of fipronil insecticide in somatic cells of Drosophila melanogaster. Chemosphere 165:342–351
Google Scholar
de Morais MR, Zanardi OZ, Rugno GR, Yamamoto PT (2016b) Impact of five insecticides used to control citrus pests on the parasitoid Ageniaspis citricola Longvinovskaya (Hymenoptera: Encyrtidae). Ecotoxicology 25(5):1011–1020
Google Scholar
de Perre C, Murphy TM, Lydy MJ (2015) Fate and effects of clothianidin in fields using conservation practices. Environ Toxicol Chem 34(2):258–265
Google Scholar
deVriesFT, ThébaultE, LiiriM, BirkhoferK, TsiafouliMA, BjørnlundL, Bracht JørgensenH, BradyMV, ChristensenS, deRuiterPC and others. (2013). Soil food web properties explain ecosystem services across European land use systems. PNAS110(35):14296–14301
Dechaume-Moncharmont F-X, Decourtye A, Hennequet-Hantier C, Pons O, Pham-Delègue M-H (2003) Statistical analysis of honeybee survival after chronic exposure to insecticides. Environ Toxicol Chem 22(12):3088–3094
Google Scholar
Decourtye A, Devillers J, Genecque E, Menach KL, Budzinski H, Cluzeau S, Pham-Delègue MH (2005) Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the honeybee Apis mellifera. Arch Environ Contam Toxicol 48(2):242–250
CAS
Google Scholar
Delbeke F, Vercruysse P, Tirry L, Clercq PD, Degheele D (1997) Toxicity of diflubenzuron, pyriproxyfen, imidacloprid and diafenthiuron to the predatory bug Orius laevigatus (Het.: Anthocoridae). Entomophaga 42:349–358
CAS
Google Scholar
Démares FJ, Crous KL, Pirk CWW, Nicolson SW, Human H (2016) Sucrose sensitivity of honey bees is differently affected by dietary protein and a neonicotinoid pesticide. PLoS One 11(6):e0156584
Google Scholar
Dembilio Ó, Riba JM, Gamón M, Jacas JA (2015) Mobility and efficacy of abamectin and imidacloprid against Rhynchophorus ferrugineus in Phoenix canariensis by different application methods. Pest Manag Sci 71(8):1091–1098
CAS
Google Scholar
Devillers J, Decourtye A, Budzinski H, Pham-Delègue MH, Cluzeau S, Maurin G (2003) Comparative toxicity and hazards of pesticides to Apis and non-Apis bees. A chemometrical study. SAR-QSAR Environ Res 14(5–6):389–403
CAS
Google Scholar
Dively GP, Embrey MS, Kamel A, Hawthorne DJ, Pettis JS (2015) Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS One 10(3):e0118748
Google Scholar
dos Santos A, Zanetti R, dos Santos JC, Biagiotti G, Evangelista AL, Serrão JE, Zanuncio JC (2016) Persistence of fipronil residues in Eucalyptus seedlings and its concentration in the insecticide solution after treatment in the nursery. Environ Monit Assess 188(5):1–5
CAS
Google Scholar
Doublet V, Labarussias M, de Miranda JR, Moritz RFA, Paxton RJ (2014) Bees under stress: sublethal doses of a neonicotinoid pesticide and pathogens interact to elevate honey bee mortality across the life cycle. Environ Microbiol 17:969–983
Google Scholar
Douglas M, Tooker JF (2015) Large-scale deployment of seed treatments has driven rapid increase in use of neonicotinoid insecticides and preemptive pest management in U.S. field crops. Environ Sci Technol 49:5088–5097
CAS
Google Scholar
Douglas MR, Tooker JF (2016) Meta-analysis reveals that seed-applied neonicotinoids and pyrethroids have similar negative effects on abundance of arthropod natural enemies. PeerJ 4:e2776
Google Scholar
DrozY, Miéville-OttV, ForneyJ, SpichigerR (2009) Anthropologie politique du paysage
Dussaubat C, Maisonnasse A, Crauser D, Tchamitchian S, Bonnet M, Cousin M, Kretzschmar A, Brunet J-L, Le Conte Y (2016) Combined neonicotinoid pesticide and parasite stress alter honeybee queens’ physiology and survival. Sci Rep 6:31430
CAS
Google Scholar
EASAC (2015) Ecosystem services, agriculture and neonicotinoids. EASAC policy report 26, 61 pp. European Academies Science Advisory Council.http://www.easac.eu/fileadmin/Reports/Easac_15_ES_web_complete_01.pdf. Accessed 23 July 2017
EFSA (2012) Scientific opinion of the panel on plant protection products and their residues on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal 10(5):2668
Google Scholar
Ehsan H, Mervat H, Eman W, Magdy F (2016) Influence of fipronil intoxication on thyroid gland ultra-structure and hepatic microsomal enzymes expression in male albino rats. Jap J Vet Res 64:S79–S85
Google Scholar
Eilers EJ, Kremen C, Smith Greenleaf S, Garber AK, Klein A-M (2011) Contribution of pollinator-mediated crops to nutrients in the human food supply. PLoS One 6:e21363. https://doi.org/10.1371/journal.pone.0021363
CAS
Article
Google Scholar
El-Murr A, Ali HA, Elgaml SA, Hashish EA (2016) The β-1,3-glucan alleviated the hepatotoxicity induced by combination of fipronil and lead in common carp (Cyprinus carpio). Comparative Clinical Pathology 25:689–697
El-Murr A, Imam T, Hakim Y, Ghonimi W (2015) Histopathological, immunological, hematological and biochemical effects of fipronil on Nile tilapia (Oreochromis niloticus). J Vet Sci Technol 6
Ellis C, Park KJ, Whitehorn P, David A, Goulson D (2017) The neonicotinoid insecticide thiacloprid impacts upon bumblebee colony development under field conditions. Environ Sci Technol 51(3):1727–1732
CAS
Google Scholar
Elzen GW, Rojas MG, Elzen PJ, King EG, Barcenas NM (1999) Toxicological responses of the boll weevil (Coleoptera: Curculionidae) ectoparasitoid Catolaccus grandis (Hymenoptera: Pteromalidae) to selected insecticides. J. Econ. Entomol. 92(2):309–313
EnglertD, BundschuhM, SchulzR. (2012). Thiacloprid affects trophic interaction between gammarids and mayflies. Environ Pollut167(0):41–46
Englert D, Zubrod JP, Link M, Mertins S, Schulz R, Bundschuh M (2017) Does waterborne exposure explain effects caused by neonicotinoid-contaminated plant material in aquatic systems? Environ Sci Technol 51(10):5793–5802
CAS
Google Scholar
Feltham H, Park K, Goulson D (2014) Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23(3):317–323
CAS
Google Scholar
FERA (2013) Neonicotinoid pesticides and bees. Report to Syngenta Ltd.: Food and Environment Research Agency
Fernandes MES, Alves FM, Pereira RC, Aquino LA, Fernandes FL, Zanuncio JC (2016) Lethal and sublethal effects of seven insecticides on three beneficial insects in laboratory assays and field trials. Chemosphere 156:45–55
CAS
Google Scholar
Fischer J, Müller T, Spatz A-K, Greggers U, Grünewald B, Menzel R (2014) Neonicotinoids interfere with specific components of navigation in honeybees. PLoS One 9(3):e91364
Google Scholar
Fogel MN, Schneider MI, Rimoldi F, Ladux LS, Desneux N, Ronco AE (2016) Toxicity assessment of four insecticides with different modes of action on pupae and adults of Eriopis connexa (Coleoptera: Coccinellidae), a relevant predator of the Neotropical Region. Environ Sci Pollut Res 23(15):14918–14926
CAS
Google Scholar
Forfert N, Moritz RF (2017) Thiacloprid alters social interactions among honey bee workers (Apis mellifera). J ApicultRes 56(4):467–474
Google Scholar
Forister ML, Cousens B, Harrison JG, Anderson K, Thorne JH, Waetjen D, Nice CC, De Parsia M, Hladik ML, Meese R et al (2016) Increasing neonicotinoid use and the declining butterfly fauna of lowland California. Biol Lett 12(8):20160475
Google Scholar
Frew JA, Grue CE (2015) Assessing the risk to green sturgeon from application of imidacloprid to control burrowing shrimp in Willapa Bay, Washington—part II: controlled exposure studies. Environ Toxicol Chem 34(11):2542–2548
CAS
Google Scholar
Frew JA, Sadilek M, Grue CE (2015) Assessing the risk to green sturgeon from application of imidacloprid to control burrowing shrimp in Willapa Bay, Washington—part I: exposure characterization. Environ Toxicol Chem 34(11):2533–2541
CAS
Google Scholar
Furlan L, Pozzebon A, Duso C, Simon-Delso N, Sánchez-Bayo F, Marchand PA, Codato F, Bijleveld van Lexmond M, Bonmatin JM (2017) Alternatives to systemic insecticides. Environ Sci Pollut Res (this issue)
Gaikwad S, Reddy K (2016) Toxicity of imidacloprid insecticide influenced by ph and temperature on the freshwater fish Rasbora daniconius (Ham.) J Atoms Mol 6:961–965
CAS
Google Scholar
Gan J, Bondarenko S, Oki L, Haver D, Li JX (2012) Occurrence of fipronil and its biologically active derivatives in urban residential runoff. Environ Sci Technol 46(3):1489–1495
CAS
Google Scholar
Gao L-r, Li S, Zhang J, Liang C, Chen E-n, Zhang S-y, Chuai M, Bao Y-p, Wang G, Yang X. (2016) Excess imidacloprid exposure causes the heart tube malformation of chick embryos. J Agric. Food Chem
Garbuzov M, Couvillon MJ, Schürch R, Ratnieks FLW (2015) Honey bee dance decoding and pollen-load analysis show limited foraging on spring-flowering oilseed rape, a potential source of neonicotinoid contamination. Agric Ecosyst Environ 203:62–68
Google Scholar
Ge W, Yan S, Wang J, Zhu L, Chen A, Wang J (2015) Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio). J Agric Food Chem 63(6):1856–1862
CAS
Google Scholar
Gibbons D, Morrissey C, Mineau P (2015) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife. Environ Sci Pollut Res 22(1):103–118
CAS
Google Scholar
Gibbons D, Morrissey C, Mineau P (2016) A review of the direct and indirect effects of neonicotinoids and fipronil on vertebrate wildlife (vol 22, pg 103, 2015); erratum. Environmental Science and Pollution Research 23:947–947
Gill RJ, Raine NE (2014) Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Funct Ecol 28(6):1459–1471
Google Scholar
Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491:105–108
CAS
Google Scholar
Giorio C, Anton Safer A, Sánchez-Bayo F, Tapparo A, Lentola A, Girolami V, Bijleveld van Lexmond M, Bonmatin J-M (2017) An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 1: new molecules, metabolism, fate and transport. Environ Sci Pollut Res. (this issue)
Gobeli A, Crossley Ii D, Johnson J, Reyna K (2017) The effects of neonicotinoid exposure on embryonic development and organ mass in northern bobwhite quail (Colinus virginianus). Comp Biochem Physiol Part C 195:9–15
CAS
Google Scholar
Godfray HCJ, Blacquière T, Field LM, Hails RS, Potts SG, Raine NE, Vanbergen AJ, McLean AR (2015) A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc R Soc B 282:20151821
Google Scholar
Godinho A, Souza A, Carvalho C, Horta D, De Fraia D, Anselmo F, Chaguri J, Faria C (2017) Memory impairment due to fipronil pesticide exposure occurs at the GABA(A) receptor level, in rats. Physiol Behav 165:28–34
Google Scholar
Gontijo PC, Moscardini VF, Michaud JP, Carvalho GA (2014) Non-target effects of chlorantraniliprole and thiamethoxam on Chrysoperla carnea when employed as sunflower seed treatments. J Pest Sci 87(4):711–719
Google Scholar
Gontijo PC, Moscardini VF, Michaud JP, Carvalho GA (2015) Non-target effects of two sunflower seed treatments on Orius insidiosus (Hemiptera: Anthocoridae). Pest Manag Sci 71(4):515–522
CAS
Google Scholar
Goulson D (2013) An overview of the environmental risks posed by neonicotinoid insecticides. J Appl Ecol 50(4):977–987
Google Scholar
Goulson D (2015) Neonicotinoids impact bumblebee colony fitness in the field; a reanalysis of the UK’s Food & Environment Research Agency 2012 experiment. PeerJ 3:e854
Google Scholar
Gregorc A, Silva-Zacarin ECM, Carvalho SM, Kramberger D, Teixeira EW, Malaspina O (2016) Effects of Nosema ceranae and thiametoxam in Apis mellifera: a comparative study in Africanized and Carniolan honey bees. Chemosphere 147:328–336
CAS
Google Scholar
Gripp H, Freitas J, Almeida E, Bisinoti M, Moreira A (2017) Biochemical effects of fipronil and its metabolites on lipid peroxidation and enzymatic antioxidant defense in tadpoles (Eupemphix nattereri: Leiuperidae). Ecotoxicol Environ Saf 136:173–179
CAS
Google Scholar
Guelfi M, Maioli M, Tavares M, Mingatto F (2015) Citotoxicity of fipronil on hepatocytes isolated from rat and effects of its biotransformation. Braz Arch Biol Technol 58:843–853
CAS
Google Scholar
Haddi K, Mendes MV, Barcellos MS, Lino-Neto J, Freitas HL, Guedes RNC, Oliveira EE (2016) Sexual success after stress? Imidacloprid-induced hormesis in males of the neotropical stink bug Euschistus heros. PLoS One 11(6):e0156616
Google Scholar
Hallmann CA, Foppen RPB, van Turnhout CAM, de Kroon H, Jongejans E (2014) Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511:341–343
CAS
Google Scholar
Hayasaka D, Korenaga T, Sánchez-Bayo F, Goka K (2012) Differences in ecological impacts of systemic insecticides with different physicochemical properties on biocenosis of experimental paddy fields. Ecotoxicology 21(1):191–201
CAS
Google Scholar
Hayasaka D, Kuwayama N, Takeo A, Ishida T, Mano H, Inoue M, Nagai T, Sánchez-Bayo F, Goka K, Sawahata T (2015) Different acute toxicity of fipronil baits on invasive Linepithema humile supercolonies and some non-target ground arthropods. Ecotoxicology 24(6):1221–1228
CAS
Google Scholar
Heimbach F, Russ A, Schimmer M, Born K (2016) Large-scale monitoring of effects of clothianidin dressed oilseed rape seeds on pollinating insects in Northern Germany: implementation of the monitoring project and its representativeness. Ecotoxicology 25(9):1630–1647
CAS
Google Scholar
Henry M, Cerrutti N, Aupinel P, Decourtye A, Gayrard M, Odoux J-F, Pissard A, Rüger C, Bretagnolle V (2015) Reconciling laboratory and field assessments of neonicotinoid toxicity to honeybees. Proc R Soc London B 282(1819):20152110
Google Scholar
Hesketh H, Lahive E, Horton AA, Robinson AG, Svendsen C, Rortais A, Dorne JL, Baas J, Spurgeon DJ, Heard MS (2016) Extending standard testing period in honeybees to predict lifespan impacts of pesticides and heavy metals using dynamic energy budget modelling. Sci Rep 6:37655
CAS
Google Scholar
Hill TA, Foster RE (2000) Effect of insecticides on the diamondback moth (Lepidoptera: Plutellidae) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). J. Econ. Entomol. 93(3):763–768
HiranoT, YanaiS, OmoteharaT, HashimotoR, UmemuraY, KubotaN, MinamiK, NagaharaD, MatsuoE, AiharaY and others. (2015). The combined effect of clothianidin and environmental stress on the behavioral and reproductive function in male mice. J Vet Med Sci77(10):1207–1215
Hladik ML, Kolpin DW, Kuivila KM (2014) Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA. Environ Pollut 193:189–196
CAS
Google Scholar
Hoppe PP, Safer A, Amaral-Rogers V, Bonmatin JM, Goulson D, Menzel R, Baer B (2015) Effects of a neonicotinoid pesticide on honey bee colonies: a response to the field study by Pilling et al. (2013). Environ Sci Europe 27:28
Google Scholar
Hoshi N, Hirano T, Omotehara T, Tokumoto J, Umemura Y, Mantani Y, Tanida T, Warita K, Tabuchi Y, Yokoyama T et al (2014) Insight into the mechanism of reproductive dysfunction caused by neonicotinoid pesticides. Biol Pharm Bull 37:1439–1443
CAS
Google Scholar
Hsiao C-J, Lin C-L, Lin T-Y, Wang S-E, Wu C-H (2016) Imidacloprid toxicity impairs spatial memory of echolocation bats through neural apoptosis in hippocampal CA1 and medial entorhinal cortex areas. Neuroreport 27(6):462–468
CAS
Google Scholar
Huang J, Wu SF, Ye GY (2011) Evaluation of lethal effects of chlorantraniliprole on Chilo suppressalis and its larval parasitoid, Cotesia chilonis. Agric. Sci. China 10:1134–1138
Hussain A, Khan MF, Faheem M, Rana H (2017) Toxicity of nitenpyram and neem leaf extract against earthworm. Int J Biol Biotechnol 13(4):581–585
Google Scholar
Hussein M, Singh V, Gupta P, Yadav B, Singh A (2014a) Developmental and biochemical effects of imidacloprid on chick embryos. J Anat 22:12–17
Google Scholar
Hussein M, Singh V, Hassan M, Singh A, Yadav B (2014b) Malformations and teratogenic effects of imidacloprid on chick embryo. Sch J Appl Med Sci 2:67–72
Google Scholar
Ibrahim K, El-Desouky M, Abou-Yousef H, Gabrowny K, El-Sayed A (2015) Imidacloprid and/or esfenvalerate induce apoptosis and disrupt thyroid hormones in neonatal rats. Global J Biotechnol Biochem 10:106–112
CAS
Google Scholar
IFPRI (2014) Global hunger index. International Food Policy Research Institute, Washington, DC http://www.ifpri.org/node/538. Accessed 7 January 2016
Google Scholar
Inostroza PA, Wicht A-J, Huber T, Nagy C, Brack W, Krauss M (2016) Body burden of pesticides and wastewater-derived pollutants on freshwater invertebrates: method development and application in the Danube River. Environ Pollut 214:77–85
CAS
Google Scholar
IPBES (2016a) The assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. In: Potts SG, Imperatriz-Fonseca VL, Ngo HT (eds) Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, pp 552. http://www.ipbes.net/sites/default/files/downloads/pdf/individual_chapters_pollination_20170305.pdf. Accessed 9 July 2017
IPBES (2016b) Summary for policymakers of the assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. In: Potts SG, Imperatriz-Fonseca VL, Ngo HT, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ, Aizen MA, Cunningham SA, Eardley C, Freitas BM, Gallai N, Kevan PG, Kovács-Hostyánszki A, Kwapong PK, Li J, Li X, Martins DJ, Nates-Parra G, Pettis JS, Rader R, Viana BF (eds) Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany, pp 36. http://www.ipbes.net/sites/default/files/downloads/pdf/spm_deliverable_3a_pollination_20170222.pdf. Accessed 9 July 2017
IsbellF, CalcagnoV, HectorA, ConnollyJ, HarpoleWS, ReichPB, Scherer-LorenzenM, SchmidB, TilmanD, vanRuijvenJ and others. (2011). High plant diversity is needed to maintain ecosystem services. Nature477(7363):199–202
Iturburu FG, Zömisch M, Panzeri AM, Crupkin AC, Contardo-Jara V, Pflugmacher S, Menone ML (2017) Uptake, distribution in different tissues, and genotoxicity of imidacloprid in the freshwater fish Australoheros facetus. Environ Toxicol Chem 36(3):699–708
CAS
Google Scholar
Iwasa T, Motoyama N, Ambrose JT, Roe RM (2004) Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Prot 23(5):371–378
CAS
Google Scholar
Jacob CRO, Soares HM, Nocelli RCF, Malaspina O (2015) Impact of fipronil on the mushroom bodies of the stingless bee Scaptotrigona postica. Pest Manag Sci 71(1):114–122
CAS
Google Scholar
Jalali MA, Van Leeuwen T, Tirry L, De Clercq P (2009) Toxicity of selected insecticides to the two-spot ladybird Adalia bipunctata. Phytoparasitica 37(4):323–326
CAS
Google Scholar
Jinguji H, Uéda T (2015) Can the use of more selective insecticides promote the conservation of Sympetrum frequens in Japanese rice paddy fields (Odonata: Libellulidae)? Odonatologica 44(1–2)
Jyot G, Mandal K, Singh B (2015) Effect of dehydrogenase, phosphatase and urease activity in cotton soil after applying thiamethoxam as seed treatment. Environ Monit Assess 187(5):1–7
CAS
Google Scholar
Kaakeh N, Kaakeh W, Bennett GW (1996) Topical toxicity of imidacloprid, fipronil, and seven conventional insecticides to the adult convergent lady beetle (Coleoptera: Coccinellidae). J Entomol Sci 31:315–322
CAS
Google Scholar
Kairo G, Poquet Y, Haji H, Tchamitchian S, Cousin M, Bonnet M, Pelissier M, Kretzschmar A, Belzunces LP, Brunet J-L (2017) Assessment of the toxic effect of pesticides on honey bee drone fertility using laboratory and semifield approaches: a case study of fipronil. Environ Toxicol Chem 36(9):2345–2351
CAS
Google Scholar
Kairo G, Provost B, Tchamitchian S, Ben Abdelkader F, Bonnet M, Cousin M, Sénéchal J, Benet P, Kretzschmar A, Belzunces LP et al (2016) Drone exposure to the systemic insecticide fipronil indirectly impairs queen reproductive potential. Sci Rep 6:31904
CAS
Google Scholar
Khani A, Ahmadi F, Ghadamyari M (2012) Side effects of imidacloprid and abamectin on the mealybug destroyer Cryptolaemus montrouzieri. Trakia J Sci 10(3):30–35
Google Scholar
Kapoor U, Srivastava MK, Trivedi P, Garg V, Srivastava LP (2014) Disposition and acute toxicity of imidacloprid in female rats after single exposure. Food Chem Toxicol 68:190–195
CAS
Google Scholar
Kara M, Yumrutas O, Demir CF, Ozdemir HH, Bozgeyik I, Coskun S, Eraslan E, Bal R (2015) Insecticide imidacloprid influences cognitive functions and alterslearning performance and related gene expression in a rat model. Int J Exp Pathol 96(5):332–337
CAS
Google Scholar
Karahan A, Çakmak I, Hranitz J, Karaca I, Wells H (2015) Sublethal imidacloprid effects on honey bee flower choices when foraging. Ecotoxicology 24(9):2017–2025
CAS
Google Scholar
Kartheek R, David M (2016) Fipronil induced modulations in biochemical and histopathological aspects of male Wistar albino rats: a subchronic study. World 5:26–32
Google Scholar
Karthik P, Venugopal S, Datchina Murthy K, Lokesh S, Karthik G, Sharmila U, Paramasivam M, Senguttuvan K, Gunasekaran K, Kuttalam S (2015) Bioefficacy, phytotoxicity, safety to natural enemies and residue dynamics of imidacloprid 70 WG in okra (Abelmoschus esculenta (L) Moench) under open field conditions. Crop Prot 71:88–94
CAS
Google Scholar
Kasai A, Hayashi TI, Ohnishi H, Suzuki K, Hayasaka D, Goka K (2016) Fipronil application on rice paddy fields reduces densities of common skimmer and scarlet skimmer. Sci Rep 6:23055
CAS
Google Scholar
Kasiotis KM, Anagnostopoulos C, Anastasiadou P, Machera K (2014) Pesticide residues in honeybees, honey and bee pollen by LC-MS/MS screening: reported death incidents in honeybees. Sci Total Environ 485-486(0):633–642
CAS
Google Scholar
Kataria S, Chhillar A, Kumar A, Tomar M, Malik V (2016) Cytogenetic and hematological alterations induced by acute oral exposure of imidacloprid in female mice. Drug Chem Toxicol 39:59–65
CAS
Google Scholar
Kattwinkel M, Reichert P, Rüegg J, Liess M, Schuwirth N (2016) Modeling macroinvertebrate community dynamics in stream mesocosms contaminated with a pesticide. Environ Sci Technol 50(6):3165–3173
CAS
Google Scholar
Kessler SC, Tiedeken EJ, Simcock KL, Derveau S, Mitchell J, Softley S, Stout JC, Wright GA (2015) Bees prefer foods containing neonicotinoid pesticides. Nature 521:74–76
CAS
Google Scholar
Kevan PG, Menzel R (2012) The plight of pollination and the interface of neurobiology, ecology and food security. Environmentalist. https://doi.org/10.1007/s10669-012-9394-5
Khalil SR, Awad A, Mohammed HH (2017) Behavioral response and gene expression changes in fipronil-administered male Japanese quail (Coturnix japonica). Environ Pollut 223:51–61
CAS
Google Scholar
Khan MA, Khan H, Ruberson JR (2015) Lethal and behavioral effects of selected novel pesticides on adults of Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Pest Manag Sci 71(12):1640–1648
CAS
Google Scholar
Kiljanek T, Niewiadowska A, Gaweł M, Semeniuk S, Borzęcka M, Posyniak A, Pohorecka K (2017) Multiple pesticide residues in live and poisoned honeybees—Preliminary exposure assessment. Chemosphere 175:36–44
CAS
Google Scholar
Kiljanek T, Niewiadowska A, Posyniak A (2016) Pesticide poisoning of honeybees: A review of symptoms, incident classification, and causes of poisoning. J Apicult Sci 60(2):5–24
CAS
Google Scholar
Kimura K, Yoshiyama M, Saito K, Nirasawa K, Ishizaka M (2014) Examination of mass honey bee death at the entrance to hives in a paddy rice production district in Japan: the influence of insecticides sprayed on nearby rice fields. J Apicult Res 53(5):599–606
Google Scholar
Kimura-Kuroda J, Nishito Y, Yanagisawa H, Kuroda Y, Komuta Y, Kawano H, Hayashi M (2016) Neonicotinoid insecticides alter the gene expression profile of neuron-enriched cultures from neonatal rat cerebellum. Int J Environ Res Pub Health 13:987
Google Scholar
Klatt BK, Holzschuh A, Westphal C, Clough Y, Smit I, Pawelzik E, Tscharntke T (2014) Bee pollination improves crop quality, shelf life and commercial value. Proc R Soc B 281:20132440
Google Scholar
Kleijn D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M, Isaacs R, Klein A-M, Kremen C, M'Gonigle LK, Rader R et al (2015) Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat Commun 6:7414
Google Scholar
KleinA-M, VaissièreBE, CaneJH, Steffan-DewenterI, CunninghamSA, KremenC, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B274(1608):303–313
Ko K, Liu Y, Hou M, Babendreier D, Zhang F, Song K (2015) Toxicity of insecticides targeting rice planthoppers to adult and immature stages of Trichogramma chilonis (Hymenoptera: Trichogrammatidae). J Econ Entomol 108(1):69–76
CAS
Google Scholar
Kobashi K, Harada T, Adachi Y, Mori M, Ihara M, Hayasaka D (2017) Comparative ecotoxicity of imidacloprid and dinotefuran to aquatic insects in rice mesocosms. Ecotoxicol Environ Saf 138:122–129
CAS
Google Scholar
Kreutzweiser DP, Good KP, Chartrand DT, Scarr TA, Holmes SB, Thompson DG (2008a) Effects on litter-dwelling earthworms and microbial decomposition of soil-applied imidacloprid for control of wood-boring insects. Pest Manag Sci 64(2):112–118
CAS
Google Scholar
Kreutzweiser DP, Good KP, Chartrand DT, Scarr TA, Thompson DG (2008b) Are leaves that fall from imidacloprid-treated maple trees to control Asian longhorned beetles toxic to non-target decomposer organisms? J Environ Qual 37(2):639–646
CAS
Google Scholar
Krischik V, Rogers M, Gupta G, Varshney A (2015) Soil-applied imidacloprid translocates to ornamental flowers and reduces survival of adult Coleomegilla maculata, Harmonia axyridis, and Hippodamia convergens lady beetles, and larval Danaus plexippus and Vanessa cardui butterflies. PLoS One 10(3):e0119133
Google Scholar
Krupke CH, Holland JD, Long EY, Eitzer BD (2017) Planting of neonicotinoid-treated maize poses risks for honey bees and other non-target organisms over a wide area without consistent crop yield benefit. J Appl Ecol in press Doi. https://doi.org/10.1111/1365-2664.12924
Krupke CH, Long EY (2015) Intersections between neonicotinoid seed treatments and honey bees. Cur Op Ins Sci 10:8–13
Google Scholar
Kumar A, Tomar M, Kataria S (2014) Effect of sub-lethal doses of imidacloprid on histological and biochemical parameters in female albino mice. ISOR J Environ Sci Toxicol Food Technol 8:9–15
CAS
Google Scholar
Kunce W, Josefsson S, Örberg J, Johansson F (2015) Combination effects of pyrethroids and neonicotinoids on development and survival of Chironomus riparius. Ecotoxicol Environ Saf 122:426–431
CAS
Google Scholar
Kurwadkar S, Evans A (2016) Neonicotinoids: systemic insecticides and systematic failure. Bull Environ Contam Toxicol 97(6):745–748
CAS
Google Scholar
Lanteigne M, Whiting SA, Lydy MJ (2015) Mixture toxicity of imidacloprid and cyfluthrin to two non-target species, the fathead minnow Pimephales promelas and the amphipod Hyalella azteca. Arch Environ Contam Toxicol 68(2):354–361
CAS
Google Scholar
Laycock I, Cotterell KC, O'Shea-Wheller TA, Cresswell JE (2014) Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees. Ecotoxicol Environ Saf 100:153–158
CAS
Google Scholar
Lefebvre M, Bostanian NJ, Mauffette Y, Racette G, Thistlewood HA, Hardman JM (2012) Laboratory-based toxicological assessments of new insecticides on mortality and fecundity of Neoseiulus fallacis (Acari: Phytoseiidae). J Econ Entomol 105(3):866–871
CAS
Google Scholar
Li H, Wu F, Zhao L, Tan J, Jiang H, Hu F (2015a) Neonicotinoid insecticide interact with honeybee odorant-binding protein: implication for olfactory dysfunction. Int J Biol Macromol 81:624–630
CAS
Google Scholar
Li W, Zhang P, Zhang J, Lin W, Lu Y, Gao Y (2015b) Acute and sublethal effects of neonicotinoids and pymetrozine on an important egg parasitoid, Trichogramma ostriniae (Hymenoptera: Trichogrammatidae). Biocontrol Sci Tech 25(2):121–131
Google Scholar
Lim UT, Mahmoud AMA (2008) Ecotoxicological effect of fenitrothion on Trissolcus nigripedius (Hymenoptera: Scelionidae) an egg parasitoid of Dolycoris baccarum (Hemiptera: Pentatomidae). J. Asia-Pacific Entomol. 11:207–210
Lima MAP, Martins GF, Oliveira EE, Guedes RNC (2016) Agrochemical-induced stress in stingless bees: peculiarities, underlying basis, and challenges. J Comp Physiol A 202(9):733–747
CAS
Google Scholar
Liu M, Wang G, S-y Z, Zhong S, G-l Q, Wang C-j, Chuai M, Lee KKH, Lu D-x, Yang X (2016) Exposing imidacloprid interferes with neurogenesis through impacting on chick neural tube cell survival. Toxicol Sci 153(1):137–148
CAS
Google Scholar
Lohiya A, Poonia J, Kumar V (2016) Influence of subacute exposure of imidacloprid on microelement zinc in ovarian tissue of adult female wistar rats. Q Res J Plant Anim Sci/Bhartiya Krishi Anusandhan Patrika 31
Long EY, Krupke CH (2016) Non-cultivated plants present a season-long route of pesticide exposure for honey bees. Nat Commun 7:11629
CAS
Google Scholar
López JH, Krainer S, Engert A, Schuehly W, Riessberger-Gallé U, Crailsheim K (2017) Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae. Sci Rep 7:40853
Google Scholar
Lopez-Antia A, Ortiz-Santaliestra ME, Mateo R (2014) Experimental approaches to test pesticide-treated seed avoidance by birds under a simulated diversification of food sources. Sci Total Environ 496(0):179–187
Lopez-Antia A, Ortiz-Santaliestra ME, Mougeot F, Mateo R (2015a) Imidacloprid-treated seed ingestion has lethal effect on adult partridges and reduces both breeding investment and offspring immunity. Environ Res 136:97–107
CAS
Google Scholar
Lopez-Antia A, Ortiz-Santaliestra ME, Camarero PR, Mougeot F, Mateo R (2015b) Assessing the risk of fipronil-treated seed ingestion and associated adverse effects in the red-legged partridge. Environ Sci Technol 49(22):13649–13657
CAS
Google Scholar
Lopez-Antia A, Feliu J, Camarero PR, Ortiz-Santaliestra ME, Mateo R (2016) Risk assessment of pesticide seed treatment for farmland birds using refined field data. J Appl Ecol 53(5):1373–1381
Google Scholar
Lourenco CT, Carvalho SM, Malaspina O, Nocelli RCF (2012) Oral toxicity of fipronil insecticide against the stingless bee Melipona scutellaris (Latreille, 1811). Bull Environ Contam Toxicol 89(4):921–924
CAS
Google Scholar
Lovinskaya A, Kolumbayeva S, Kolomiets O, Abilev S (2014) Genotoxic effects of pesticide fipronil in somatic and generative cells of mice. Russ J Genet 52:491–497
Google Scholar
Lu C, Warchol KM, Callahan RA (2014) Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder. Bull Insectol 67(1):125–130
CAS
Google Scholar
Lucas É, Giroux S, Demougeot S, Duchesne RM, Coderre D (2004) Compatibility of a natural enemy, Coleomegilla maculata lengi (Col., Coccinellidae) and four insecticides used against the Colorado potato beetle (Col., Chrysomelidae). J Appl Entomol 128(3):233–239
Google Scholar
Luna-Cruz A, Rodríguez-Leyva E, Lomeli-Flores JR, Ortega-Arenas LD, Bautista-Martínez N, Pineda S (2015) Toxicity and residual activity of insecticides against Tamarixia triozae (Hymenoptera: Eulophidae), a parasitoid of Bactericera cockerelli (Hemiptera: Triozidae). J Econ Entomol 108(5):2289–2295
CAS
Google Scholar
Lundin O, Rundlöf M, Smith HG, Fries I, Bommarco R (2015) Neonicotinoid insecticides and their impacts on bees: a systematic review of research approaches and identification of knowledge gaps. PLoS One 10(8):e0136928
Google Scholar
Magalhães JZ, Udo MSB, Sánchez-Sarmiento AM, Carvalho MPN, Bernardi MM, Spinosa HS (2015) Prenatal exposure to fipronil disturbs maternal aggressive behavior in rats. Neurotoxicol Teratol 52:11–16
Google Scholar
Mallinger RE, Werts P, Gratton C (2015) Pesticide use within a pollinator-dependent crop has negative effects on the abundance and species richness of sweat bees, Lasioglossum spp., and on bumble bee colony growth. J Ins Conserv 19(5):999–1010
Google Scholar
Martinez A-M, Chavarrieta J-M, Morales S-I, Caudillo K-B, Figueroa J-I, Diaz O, Bujanos R, Gomez B, Viñuela E, Pineda S (2015) Behavior of Tamarixia triozae females (Hymenoptera: Eulophidae) attacking Bactericera cockerelli (Hemiptera: Triozidae) and effects of three pesticides on this parasitoid. Environ Entomol 44(1):3–11
CAS
Google Scholar
Maute K, French K, Story P, Bull CM, Hose GC (2016) Effects of two locust control methods on wood-eating termites in arid Australia. J Ins Conserv 20(1):107–118
Google Scholar
Maute K, French K, Story P, Bull CM, Hose GC (2017a) Short and long-term impacts of ultra-low-volume pesticide and biopesticide applications for locust control on non-target arid zone arthropods. Agric Ecosyst Environ 240:233–243
CAS
Google Scholar
Maute K, Story P, Hose GC, Bull CM, French K (2017b) Applications of fipronil (Adonis 3UL) and Metarhizium acridum for use against locusts have minimal effect on litter decomposition and microbial functional diversity in Australian arid grassland. Soil Res 55(2):172–181
CAS
Google Scholar
Maxim L, Van der Sluijs JP (2013). Seed-dressing systemic insecticides and honeybees. In: Late lessons from early warnings: science, precaution, innovation. 401–438, European Environment Agency. European Environment Agency (EEA) report 1/2013, Copenhagen
Melathopoulos AP, Cutler GC, Tyedmers P (2015) Where is the value in valuing pollination ecosystem services to agriculture? Ecol Econ 109:59–70
Google Scholar
Menezes C, Leitemperger J, Murussi C, de Souza VM, Adaime M, Zanella R, Loro V (2016) Effect of diphenyl diselenide diet supplementation on oxidative stress biomarkers in two species of freshwater fish exposed to the insecticide fipronil. Fish Physiol Biochem 42:1357–1368
CAS
Google Scholar
Mengoni Goñalons C, Farina WM (2015) Effects of sublethal doses of Imidacloprid on young adult honeybee behaviour. PLoS One 10(10):e0140814
Google Scholar
Miles JC, Hua J, Sepulveda MS, Krupke CH, Hoverman JT (2017) Effects of clothianidin on aquatic communities: evaluating the impacts of lethal and sublethal exposure to neonicotinoids. PLoS One 12(3):e0174171
Google Scholar
Millot F, Berny P, Decors A, Bro E (2015) Little field evidence of direct acute and short-term effects of current pesticides on the grey partridge. Ecotoxicol Environ Saf 117:41–61
CAS
Google Scholar
Millot F, Decors A, Mastain O, Quintaine T, Berny P, Vey D, Lasseur R, Bro E. (2017) Field evidence of bird poisonings by imidacloprid-treated seeds: a review of incidents reported by the French SAGIR network from 1995 to 2014. Environ Sci Pollut Res.:1-17
Mineau P, Palmer C (2013) The impact of the nation’s most widely used insecticides on birds. American Bird Conservancy, Virginia, 97 p
Google Scholar
Mize SV, Porter SD, Demcheck DK (2008) Influence of fipronil compounds and rice-cultivation land-use intensity on macroinvertebrate communities in streams of southwestern Louisiana. USA Environ Pollut 152(2):491–503
CAS
Google Scholar
Mizell RF, Sconyers MC (1992) Toxicity of imidacloprid to selected arthropod predators in the laboratory. The Florida Entomologist 75(2):277–280
CAS
Google Scholar
Mogren CL, Lundgren JG (2016) Neonicotinoid-contaminated pollinator strips adjacent to cropland reduce honey bee nutritional status. Sci Rep 6:29608
CAS
Google Scholar
Montanha FP, Machado FD, Faria CA, Anselmo F, Lot RFE, Ferioli RB, Rocha NS, Godinho AF (2016) Lactational exposure to fipronil pesticide in low dose impairs memory in rat offspring. J Neurol Disord 4(4):1000279
Google Scholar
Mori K, Gotoh T (2001) Effects of pesticides on the spider mite predators, Scolothrips takahashii (Thysanoptera: Thripidae) and Stethorus japonicus (Coleoptera: Coccinellidae). Int J Acarol 27(4):299–302
Google Scholar
Morrissey CA, Mineau P, Devries JH, Sánchez-Bayo F, Liess M, Cavallaro MC, Liber K (2015) Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review. Environ Int 74:291–303
CAS
Google Scholar
Moscardini VF, Gontijo PC, Michaud JP, Carvalho GA (2015) Sublethal effects of insecticide seed treatments on two nearctic lady beetles (Coleoptera: Coccinellidae). Ecotoxicology 24(5):1152–1161
CAS
Google Scholar
Mulè RD, Sabella GD, Robba L, Manachini B (2017) Systematic review of the effects of chemical insecticides on four common butterfly families. Front Environ Sci 5:32
Google Scholar
Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, vanEngelsdorp D, Pettis JS (2010) High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS One 5(3):e9754
Google Scholar
Nicole W (2015) Pollinator power: nutrition security benefits of an ecosystem service. Environ Health Perspect 123:A210–A215
Google Scholar
Nieto A, Roberts SPM, Kemp J et al (2014) European red list of bees. Publication Office of the European Union, Luxembourg
Google Scholar
Oliveira RA, Roat TC, Carvalho SM, Malaspina O (2013) Side-effects of thiamethoxam on the brain and midgut of the africanized honeybee Apis mellifera (Hymenopptera: Apidae). Environ Toxicol 29(10):1122–1133
Google Scholar
Özdemir HH, Kara M, Yumrutas O, Uckardes F, Eraslan E, Demir CF, Bal R (2014) Determination of the effects on learning and memory performance and related gene expressions of clothianidin in rat models. Cogn Neurodyn 8(5):411–416
Google Scholar
Ozsahin A, Bal R, Yılmaz O (2014) Biochemical alterations in kidneys of infant and adult male rats due to exposure to the neonicotinoid insecticides imidacloprid and clothianidin. Toxicol Res 3:324–330
CAS
Google Scholar
Paetzold A, Warren PH, Maltby LL (2010) A framework for assessing ecological quality based on ecosystem services. Ecol Complex 7(3):273–281
Google Scholar
Paine TD, Hanlon CC, Byrne FJ (2011) Potential risks of systemic imidacloprid to parasitoid natural enemies of a cerambycid attacking Eucalyptus. Biol. Control 56(2):175–178
Pandey SP, Mohanty B (2015) The neonicotinoid pesticide imidacloprid and the dithiocarbamate fungicide mancozeb disrupt the pituitary–thyroid axis of a wildlife bird. Chemosphere 122:227–234
Papach A, Fortini D, Grateau S, Aupinel P, Richard FJ (2017) Larval exposure to thiamethoxam and American foulbrood: effects on mortality and cognition in the honey bee Apis mellifera. J Apicult Res 56(4):475–486
Google Scholar
Peng Y-C, Yang E-C (2016) Sublethal dosage of imidacloprid reduces the microglomerular density of honey bee mushroom bodies. Sci Rep 6:19298
CAS
Google Scholar
Pérez-Iglesias JM, Ruiz de Arcaute C, Nikoloff N, Dury L, Soloneski S, Natale GS, Larramendy ML (2014) The genotoxic effects of the imidacloprid-based insecticide formulation Glacoxan Imida on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol Environ Saf 104:120–126
Google Scholar
Piiroinen S, Botias C, Nicholls E, Goulson D (2016) No effect of low-level chronic neonicotinoid exposure on bumblebee learning and fecundity. PeerJ 4:e1808
Google Scholar
Pilling E, Campbell P, Coulson M, Ruddle N, Tornier I (2013) A four-year field program investigating long-term effects of repeated exposure of honey bee colonies to flowering crops treated with thiamethoxam. PLoS One 8(10):e77193
CAS
Google Scholar
PisaLW, Amaral-RogersV, BelzuncesLP, BonmatinJM, DownsCA, GoulsonD, KreutzweiserDP, KrupkeC, LiessM, McFieldM and others. (2015). Effects of neonicotinoids and fipronil on non-target invertebrates. Environ Sci Pollut Res22(1):68–102
Prabhaker N, Castle SJ, Naranjo SE, Toscano NC, Morse JG (2011) Compatibility of two systemic neonicotinoids, imidacloprid and thiamethoxam, with various natural enemies of agricultural pests. J. Econ. Entomol. 104(3):773–781
Prabhaker N, Morse JG, Castle SJ, Naranjo SE, Henneberry TJ, Toscano NC (2007) Toxicity of seven foliar insecticides to four insect parasitoids attacking citrus and cotton pests. J. Econ. Entomol. 100(4):1053–1061
Preetha G, Stanley J, Suresh S, Samiyappan R (2010) Risk assessment of insecticides used in rice on miridbug, Cyrtorhinus lividipennis Reuter, the important predator of brown planthopper, Nilaparvata lugens (Stal.) Chemosphere 80(5):498–503
Preetha G, Stanley J, Suresh S, Kuttalam S, Samiyappan R (2009) Toxicity of selected insecticides to Trichogramma chilonis: assessing their safety in the rice ecosystem. Phytoparasitica 37(3):209–215
Prosser RS, de Solla SR, Holman EAM, Osborne R, Robinson SA, Bartlett AJ, Maisonneuve FJ, Gillis PL (2016) Sensitivity of the early-life stages of freshwater mollusks to neonicotinoid and butenolide insecticides. Environ Pollut 218:428–435
CAS
Google Scholar
Qadir S, Iqbal F (2016) Effect of subleathal concentrtion of imidacloprid on the histology of heart, liver and kidney in Labeo rohita. Pakistan Journal of Pharmaceutical Sciences 29:2033–2038
Qadir S, Bukhari R, Iqbal F (2015) Effect of sub lethal concentration of imidacloprid on proximate body composition of Labeo rohita. Iran J Fish Sci 14(4):937–945
Google Scholar
Qadir S, Latif A, Ali M, Iqbal F (2014) Effects of imidacloprid on the hematological and serum biochemical profile of Labeo rohita. Pakistan J Zool 46(4):1085–1090
CAS
Google Scholar
Qin F, Gao Y, Xu P, Guo B, Li J, Wang H (2015) Enantioselective bioaccumulation and toxic effects of fipronil in the earthworm Eisenia foetida following soil exposure. Pest Manag Sci 71(4):553–561
CAS
Google Scholar
Qu Y, Xiao D, Li J, Chen Z, Biondi A, Desneux N, Gao X, Song D (2015) Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines. Ecotoxicology 24(3):479–487
CAS
Google Scholar
Qureshi IZ, Bibi A, Shahid S, Ghazanfar M (2016) Exposure to sub-acute doses of fipronil and buprofezin in combination or alone induces biochemical, hematological, histopathological and genotoxic damage in common carp (Cyprinus carpio L.) Aquat Toxicol 179:103–114
CAS
Google Scholar
RaderR, BartomeusI, GaribaldiLA, GarrattMPD, HowlettBG, WinfreeR, CunninghamSA, MayfieldMM, ArthurAD, AnderssonGKS and others. (2016) Non-bee insects are important contributors to global crop pollination. PNAS113(1):146–151
Rahmani S, Bandani AR (2013) Sublethal concentrations of thiamethoxam adversely affect life table parameters of the aphid predator, Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae). Crop Protection 54(0):168–175
CAS
Google Scholar
Regan K, Ordosch D, Glover KD, Tilmon KJ, Szczepaniec A (2017) Effects of a pyrethroid and two neonicotinoid insecticides on population dynamics of key pests of soybean and abundance of their natural enemies. Crop Prot 98:24–32
CAS
Google Scholar
Renzi MT, Rodríguez-Gasol N, Medrzycki P, Porrini C, Martini A, Burgio G, Maini S, Sgolastra F (2016) Combined effect of pollen quality and thiamethoxam on hypopharyngeal gland development and protein content in Apis mellifera. Apidologie 47(6):779–788
CAS
Google Scholar
Rinkevich FD, Margotta JW, Pittman JM, Danka RG, Tarver MR, Ottea JA, Healy KB (2015) Genetics, synergists, and age affect insecticide sensitivity of the honey bee, Apis mellifera. PLoS One 10(10):e0139841
Google Scholar
Rittschof CC, Coombs CB, Frazier M, Grozinger CM, Robinson GE (2015) Early-life experience affects honey bee aggression and resilience to immune challenge. Sci Rep 5:15572
CAS
Google Scholar
Roat TC, Santos-Pinto JRA, Santos LD, Santos KS, Malaspina O, Palma MS (2014) Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a sub-lethal doses of the insecticide fipronil. Ecotoxicology 23(9):1659–1670
CAS
Google Scholar
Rolke D, Persigehl M, Peters B, Sterk G, Blenau W (2016) Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey. Ecotoxicology 25(9):1691–1701
CAS
Google Scholar
Romero A, Anderson TD (2016) High levels of resistance in the common bed bug, Cimex lectularius (Hemiptera: Cimicidae), to neonicotinoid insecticides. J Med Entomol 53(3):727
CAS
Google Scholar
Rondeau G, Sánchez-Bayo F, Tennekes HA, Decourtye A, Ramírez-Romero R, Desneux N (2014) Delayed and time-cumulative toxicity of imidacloprid in bees, ants and termites. Sci Rep 4:5566
CAS
Google Scholar
Rosa AS, Teixeira JSG, Vollet-Neto A, Queiroz EP, Blochtein B, Pires CSS, Imperatriz-Fonseca VL (2016) Consumption of the neonicotinoid thiamethoxam during the larval stage affects the survival and development of the stingless bee. Scaptotrigona aff. depilis. Apidologie 47(6):729–738
CAS
Google Scholar
Rundlöf M, Andersson GKS, BommarcoR, FriesI, HederstromV, HerbertssonL, JonssonO, KlattBK, PedersenTR, YourstoneJ and others. (2015). Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature521:77–80
Rust MK, Soeprono A, Wright S, Greenberg L, Choe D-H, Boser CL, Cory C, Hanna C (2015) Laboratory and field evaluations of polyacrylamide hydrogel baits against Argentine ants (Hymenoptera: Formicidae). J Econ Entomol 108(3):1228–1236
CAS
Google Scholar
Saber M (2011) Acute and population level toxicity of imidacloprid and fenpyroximate on an important egg parasitoid, Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). Ecotoxicology 20(6):1476–1484
Saeed R, Razaq M, Hardy ICW (2016) Impact of neonicotinoid seed treatment of cotton on the cotton leafhopper, Amrasca devastans (Hemiptera: Cicadellidae), and its natural enemies. Pest Manag Sci 72(6):1260–1267
CAS
Google Scholar
Sánchez-Bayo F, Belzunces L, Bonmatin JM (2017) Lethal and sublethal effects, and incomplete clearance of ingested imidacloprid in honey bees (Apis mellifera). Ecotoxicology. https://doi.org/10.1007/s10646-017-1845-9
Sánchez-Bayo F, Desneux N (2015) Neonicotinoids and the prevalence of parasites and disease in bees. Bee World 92(2):34–40
Google Scholar
Sánchez-Bayo F, Goka K, Hayasaka D (2016a) Contamination of the aquatic environment with neonicotinoids and its implication for ecosystems. Front Environ Sci 4:71
Google Scholar
Sánchez-Bayo F, Goka K (2006) Ecological effects of the insecticide imidacloprid and a pollutant from antidandruff shampoo in experimental rice fields. Environ Toxicol Chem 25(6):1677–1687
Google Scholar
Sánchez-Bayo F, Goka K (2014) Pesticide residues and bees – A risk assessment. PLoS One 9(4):e94482
Sánchez-Bayo F, Goulson D, Pennacchio F, Nazzi F, Goka K, Desneux N (2016b) Are bee diseases linked to pesticides?—a brief review. Environ Int 89–90:7–11
Google Scholar
Sánchez-Bayo F, Tennekes HA (2017) Assessment of ecological risks of agrochemicals requires a new framework. J Environ Risk Assess Remediation 1(3):20–28
Google Scholar
Sánchez-Bayo F (2009) From simple toxicological models to prediction of toxic effects in time. Ecotoxicology 18(3):343–354
Google Scholar
Sandrock C, Tanadini LG, Pettis JS, Biesmeijer JC, Potts SG, Neumann P (2014a) Sublethal neonicotinoid insecticide exposure reduces solitary bee reproductive success. Agric Forest Entomol 16(2):119–128
Google Scholar
Sandrock C, Tanadini M, Tanadini LG, Fauser-Misslin A, Potts SG, Neumann P (2014b) Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLoS One 9(8):e103592
Google Scholar
Saxena A, Kesari V (2016) Lack of genotoxic potential of pesticides, spinosad, imidacloprid and neem oil in mice (Mus musculus). J Environ Biol 37:291–295
CAS
Google Scholar
Schaafsma A, Limay-Rios V, Xue Y, Smith J, Baute T (2016) Field-scale examination of neonicotinoid insecticide persistence in soil as a result of seed treatment use in commercial maize (corn) fields in southwestern Ontario. Environ Toxicol Chem 35(2):295–302
CAS
Google Scholar
Schick RS, Greenwood JJD, Buckland ST (2017) An experiment on the impact of a neonicotinoid pesticide on honeybees: the value of a formal analysis of the data. Environ Sci Europe 29:4
Google Scholar
Schmuck R, Lewis G (2016) Review of field and monitoring studies investigating the role of nitro-substituted neonicotinoid insecticides in the reported losses of honey bee colonies (Apis mellifera). Ecotoxicology 25(9):1617–1629
CAS
Google Scholar
Scholer J, Krischik V (2014) Chronic exposure of imidacloprid and clothianidin reduce queen survival, foraging, and nectar storing in colonies of Bombus impatiens. PLoS One 9(3):e91573
Google Scholar
Sgolastra F, Medrzycki P, Bortolotti L, Renzi MT, Tosi S, Bogo G, Teper D, Porrini C, Molowny-Horas R, Bosch J (2017) Synergistic mortality between a neonicotinoid insecticide and an ergosterol-biosynthesis-inhibiting fungicide in three bee species. Pest Manag Sci 73(6):1236–1243
CAS
Google Scholar
Silva E, Santos A, Korasaki V, Evangelista A, Bignell D, Constantino R, Zanetti R (2016) Does fipronil application on roots affect the structure of termite communities in eucalypt plantations? Forest Ecol.Manage 377:55–60
Google Scholar
Simon-DelsoN, Amaral-RogersV, BelzuncesLP, BonmatinJM, ChagnonM, DownsC, FurlanL, GibbonsDW, GiorioC, GirolamiV and others. (2015). Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ Sci Pollut Res22(1):5–34
Smith RG, Atwood LW, Morris MB, Mortensen DA, Koide RT (2016) Evidence for indirect effects of pesticide seed treatments on weed seed banks in maize and soybean. Agric Ecosyst Environ 216:269–273
Google Scholar
Sohrabi F, Shishehbor P, Saber M, Mosaddegh MS (2013) Lethal and sublethal effects of imidacloprid and buprofezin on the sweetpotato whitefly parasitoid Eretmocerus mundus (Hymenoptera: Aphelinidae). Crop Protection 45(0):98–103
Sorg M, Schwan H, Stenmans W, Müller A (2013) Ermittlung der Biomassen flugaktiver Insekten im Naturschutzgebiet Orbroicher Bruch mit Malaise Fallen in den Jahren 1989 und 2013. Proceedings of the Krefeld Entomological Society 1:1–5
Google Scholar
Spurgeon D, Hesketh H, Lahive E, Svendsen C, Baas J, Robinson A, Horton A, Heard M. (2016) Chronic oral lethal and sub-lethal toxicities of different binary mixtures of pesticides and contaminants in bees (Apis mellifera, Osmia bicornis and Bombus terrestris). Centre Ecol Hydrol. 66 p
Stanley DA, Raine NE (2016) Chronic exposure to a neonicotinoid pesticide alters the interactions between bumblebees and wild plants. Funct Ecol 30:1132–1139
Google Scholar
Stanley DA, Smith KE, Raine NE (2015b) Bumblebee learning and memory is impaired by chronic exposure to a neonicotinoid pesticide. Sci Rep 5:16508
CAS
Google Scholar
Stanley J, Sah K, Jain SK, Bhatt JC, Sushil SN (2015a) Evaluation of pesticide toxicity at their field recommended doses to honeybees, Apis cerana and A. mellifera through laboratory, semi-field and field studies. Chemosphere 119:668–674
CAS
Google Scholar
Sterk G, Peters B, Gao Z, Zumkier U (2016) Large-scale monitoring of effects of clothianidin-dressed OSR seeds on pollinating insects in Northern Germany: effects on large earth bumble bees (Bombus terrestris). Ecotoxicology 25(9):1666–1678
CAS
Google Scholar
StivaktakisPD, KavvalakisMP, TzatzarakisMN, AlegakisAK, PanagiotakisMN, FragkiadakiP, VakonakiE, OzcagliE, HayesWA, RakitskiiVN and others. (2016). Long-term exposure of rabbits to imidacloprid as quantified in blood induces genotoxic effect. Chemosphere149:108–113
Stork N, Kitching R, Davis N, Abbott K (2014) The impact of aerial baiting for control of the yellow crazy ant, Anoplolepis gracilipes, on canopy-dwelling arthropods and selected vertebrates on Christmas Island (Indian Ocean). Raffles Bull Zool: 81–92
Straub L, Villamar-Bouza L, Bruckner S, Chantawannakul P, Gauthier L, Khongphinitbunjong K, Retschnig G, Troxler A, Vidondo B, Neumann P et al (2016) Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proc R Soc B 283:20160506
Google Scholar
Suchail S, Guez D, Belzunces LP (2001) Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environ Toxicol Chem 20:2482–2486
CAS
Google Scholar
Sun L, Jin R, Peng Z, Zhou Q, Qian H, Fu Z (2014) Effects of trilostane and fipronil on the reproductive axis in an early life stage of the Japanese medaka (Oryzias latipes). Ecotoxicology 23(6):1044–1054
CAS
Google Scholar
Switzer CM, Combes SA (2016) The neonicotinoid pesticide, imidacloprid, affects Bombus impatiens (bumblebee) sonication behavior when consumed at doses below the LD50. Ecotoxicology 25(6):1150–1159
CAS
Google Scholar
Symington CA, Horne PA (1998) Relative toxicity of pesticides to pest and beneficial insects in potato crops in Victoria, Australia. In: Haskell PT, McEwen P (eds) Ecotoxicology: Pesticides and Beneficial Organisms. Chapman & Hall, London, pp 279–286
Tan K, Chen W, Dong S, Liu X, Wang Y, Nieh JC (2014) Imidacloprid alters foraging and decreases bee avoidance of predators. PLoS One 9(7):e102725
Google Scholar
Tan K, Chen W, Dong S, Liu X, Wang Y, Nieh JC (2015) A neonicotinoid impairs olfactory learning in Asian honey bees (Apis cerana) exposed as larvae or as adults. Sci Rep 5:10989
Google Scholar
Tanaka K, Endo S, Kazano H (2000) Toxicity of insecticides to predators of rice planthoppers: Spiders, the mirid bug and the dryinid wasp. Appl. Entomol. Zool. 35(1):177–187
Tavares M, Palma I, Medeiros H, Guelfi M, Santana A, Mingatto F (2015a) Comparative effects of fipronil and its metabolites sulfone and desulfinyl on the isolated rat liver mitochondria. Environ Toxicol Pharmacol 40:206–214
CAS
Google Scholar
Tavares DA, Roat TC, Carvalho SM, Silva-Zacarin ECM, Malaspina O (2015b) In vitro effects of thiamethoxam on larvae of Africanized honey bee Apis mellifera (Hymenoptera: Apidae). Chemosphere 135:370–378
CAS
Google Scholar
Tennekes HA, Sánchez-Bayo F (2012) Time-dependent toxicity of neonicotinoids and other toxicants: implications for a new approach to risk assessment. J Environ Anal Toxicol S4:S4–001
Google Scholar
Tennekes HA, Sánchez-Bayo F (2013) The molecular basis of simple relationships between exposure concentration and toxic effects with time. Toxicology 309:39–51
CAS
Google Scholar
Tennekes HA (2010) The significance of the Druckrey-Küpfmüller equation for risk assessment—the toxicity of neonicotinoid insecticides to arthropods is reinforced by exposure time. Toxicology 276(1):1–4
CAS
Google Scholar
Thany SH, Bourdin CM, Graton J, Laurent AD, Mathé-Allainmat M, Lebreton J, Questel J-YL (2015) Similar comparative low and high doses of deltamethrin and acetamiprid differently impair the retrieval of the proboscis extension reflex in the forager honey bee (Apis mellifera). Insects 6(4):805–814
Google Scholar
Thompson HM, Fryday SL, Harkin S, Milner S (2014) Potential impacts of synergism in honeybees (Apis mellifera) of exposure to neonicotinoids and sprayed fungicides in crops. Apidologie 45(5):545–553
CAS
Google Scholar
Thorbek P, Campbell PJ, Sweeney PJ, Thompson HM (2017a) Using BEEHAVE to explore pesticide protection goals for European honeybee (Apis melifera L.) worker losses at different forage qualities. Environ. Toxicol. Chem 36(1):254–264
CAS
Google Scholar
Thorbek P, Campbell PJ, Thompson HM (2017b) Colony impact of pesticide-induced sublethal effects on honeybee workers: A simulation study using BEEHAVE. Environ Toxicol Chem 36(3):831–840
CAS
Google Scholar
Tison L, Hahn M-L, Holtz S, Rößner A, Greggers U, Bischoff G, Menzel R (2016) Honey bees’ behavior is impaired by chronic exposure to the neonicotinoid thiacloprid in the field. Environ. Sci. Technol. 50(13):7218–7227
CAS
Google Scholar
Tiwari S, Agarwal S, Shukla A (2016) Elucidation of pathological alterations and ameliorative efficacy of cow urine distillate following sub-chronic exposure of imidacloprid in white leghorn cockerels. Indian J Vet Pathol 40:281–283
Google Scholar
Tomé HVV, Martins GF, Lima MAP, Campos LAO, Guedes RNC (2012) Imidacloprid-induced impairment of mushroom bodies and behavior of the native stingless bee Melipona quadrifasciata anthidioides. PLoS One 7(6):e38406
Google Scholar
Tomizawa M, Casida JE (2003) Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotinic receptors. Annu Rev Entomol 48:339–364
CAS
Google Scholar
Tosi S, Burgio G, Nieh JC (2017) A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Sci Rep 7(1):1201
Google Scholar
Tosi S, Démares FJ, Nicolson SW, Medrzycki P, Pirk CWW, Human H (2016) Effects of a neonicotinoid pesticide on thermoregulation of African honey bees (Apis mellifera scutellata). J Ins Physiol 93-94:56–63
CAS
Google Scholar
Torres JB, Ruberson JR (2004) Toxicity of thiamethoxam and imidacloprid to Podisus nigrispinus (Dallas) (Heteroptera: Pentatomidae) nymphs associated to aphid and whitefly control in cotton. Neotropical Entomol 33(1):99–106
CAS
Google Scholar
Tran DH, Ueno T (2012) Toxicity of insecticides to Neochrysocharis okazakii, a parasitoid of Liriomyza leafminers on vegetables. J. Fac. Agric. Kyushu Univ. 57:127–131
Tsvetkov N, Samson-Robert O, Sood K, Patel HS, Malena DA, Gajiwala PH, Maciukiewicz P, Fournier V, Zayed A (2017) Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science 356(6345):1395–1397
CAS
Google Scholar
Tufi S, Stel JM, de Boer J, Lamoree MH, Leonards PEG (2015) Metabolomics to explore imidacloprid-induced toxicity in the central nervous system of the freshwater snail Lymnaea stagnalis. Environ Sci Technol 49(24):14529–14536
CAS
Google Scholar
Tufi S, Wassenaar PNH, Osorio V, de Boer J, Leonards PEG, Lamoree MH (2016) Pesticide mixture toxicity in surface water extracts in snails (Lymnaea stagnalis) by an in vitro acetylcholinesterase inhibition assay and metabolomics. Environ Sci Technol 50(7):3937–3944
CAS
Google Scholar
Turaga U, Peper ST, Dunham NR, Kumar N, Kistler W, Almas S, Presley SM, Kendall RJ (2016) A survey of neonicotinoid use and potential exposure to northern bobwhite (Colinus virginianus) and scaled quail (Callipepla squamata) in the Rolling Plains of Texas and Oklahoma. Environ Toxicol Chem 35(6):1511–1515
CAS
Google Scholar
Tyor A (2016) Effects of imidacloprid on viability and hatchability of embryos of the common carp (Cyprinus carpio L.) Int J Fisher Aquat Studies 4:385–389
Google Scholar
Udo MSB, Sandini TM, Reis TM, Bernardi MM, Spinosa HS (2014) Prenatal exposure to a low fipronil dose disturbs maternal behavior and reflex development in rats. Neurotoxicol Teratol 45:27–33
CAS
Google Scholar
Uğurlu P, Ünlü E, Satar Eİ (2015) The toxicological effects of thiamethoxam on Gammarus kischineffensis (Schellenberg 1937) (Crustacea: Amphipoda). Environ Toxicol Pharmacol 39(2):720–726
Google Scholar
UhlP, BucherR, SchäferRB, EntlingMH. (2015). Sublethal effects of imidacloprid on interactions in a tritrophic system of non-target species. Chemosphere132(0):152–158
Uhl P, Franke LA, Rehberg C, Wollmann C, Stahlschmidt P, Jeker L, Brühl CA (2016) Interspecific sensitivity of bees towards dimethoate and implications for environmental risk assessment. Sci Rep 6:34439
CAS
Google Scholar
UNEP (2010) Global honey bee colony disorders and other threats to insect pollinators. UNEP emerging issues report, United Nations Environmental Program, Nairobi
Google Scholar
Valdovinos-Núñez GR, Quezada-Euán JJG, Ancona-Xiu P, Moo-Valle H, Carmona A, Sánchez ER (2009) Comparative toxicity of pesticides to stingless bees (Hymenoptera: Apidae: Meliponini). J Econ Entomol 102(5):1737–1742 Valeurs et postures paysagères des montagnes suisses, Karthala, 172 pp.
Google Scholar
Van den Brink PJ, Smeden JMV, Bekele RS, Dierick W, Gelder DD, Noteboom M, Roessink I (2016) Acute and chronic toxicity of neonicotinoids to nymphs of a mayfly species and some notes on seasonal differences. Environ Toxicol Chem 35(1):128–133
Google Scholar
Van derSluijsJP, Amaral-RogersV, BelzuncesLP, Bijleveld van LexmondM, BonmatinJM, ChagnonM, DownsCA, FurlanL, GibbonsDW, GiorioC and others. (2015). Conclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environ Sci Pollut Res22(1):148–154
Van der Sluijs JP, Vaage NS (2016) Pollinators and global food security: the need for holistic global stewardship. Food Ethics 1:75–91
Google Scholar
Van der Zee R, Gray A, Pisa L, de Rijk T (2015) An observational study of honey bee colony winter losses and their association with Varroa destructor, neonicotinoids and other risk factors. PLoS One 10(7):e0131611
Google Scholar
Van Gestel CAM, CdLe S, Lam T, Koekkoek JC, Lamoree MH, Verweij RA (2017) Multigeneration toxicity of imidacloprid and thiacloprid to Folsomia candida. Ecotoxicology 26:320–328
Google Scholar
Van Hoesel W, TiefenbacherA, KönigN, DornVM, HagenguthJF, PrahUa, WidhalmT, WiklickyV, KollerR, BonkowskiM and others. (2017). Single and combined effects of pesticide seed dressings and herbicides on earthworms, soil microorganisms, and litter decomposition. Front Plant Sci8:215
Vehovszky Á, Farkas A, Ács A, Stoliar O, Székács A, Mörtl M, Győri J (2015) Neonicotinoid insecticides inhibit cholinergic neurotransmission in a molluscan (Lymnaea stagnalis) nervous system. Aquat Toxicol 167:172–179
CAS
Google Scholar
Veire MV, Sterk G, Staaij M, Ramakers PMJ, Tirry L (2002) Sequential testing scheme for the assessment of the side-effects of plant protection products on the predatory bug Orius laevigatus. BioControl 47(1):101–113
Google Scholar
Vijver MG, van den Brink PJ (2014) Macro-invertebrate decline in surface water polluted with imidacloprid: a rebuttal and some new analyses. PLoS One 9(2):e89837
Google Scholar
Vogel G (2017) Where have all the insects gone? Science 356:576–579
CAS
Google Scholar
Vohra P, Khera KS, Sangha GK (2014) Physiological, biochemical and histological alterations induced by administration of imidacloprid in female albino rats. Pestic Biochem Physiol 110:50–56
CAS
Google Scholar
Wagner SD, Kurobe T, Hammock BG, Lam CH, Wu G, Vasylieva N, Gee SJ, Hammock BD, Teh SJ (2017) Developmental effects of fipronil on Japanese Medaka (Oryzias latipes) embryos. Chemosphere 166:511–520
CAS
Google Scholar
Walker MK, Stufkens MAW, Wallace AR (2007) Indirect non-target effects of insecticides on Tasmanian brown lacewing (Micromus tasmaniae) from feeding on lettuce aphid (Nasonovia ribisnigri). Biol Control 43(1):31–40
CAS
Google Scholar
Walker PW, Story PG, Hose GC (2016) Comparative effects of pesticides, fenitrothion and fipronil, applied as ultra-low volume formulations for locust control, on non-target invertebrate assemblages in Mitchell grass plains of south-west Queensland, Australia. Crop Prot 89:38–46
CAS
Google Scholar
Wang HY, Yang Y, Su JY, Shen JL, Gao CF, Zhu YC (2008) Assessment of the impact of insecticides on Anagrus nilaparvatae (Pang et Wang) (Hymenoptera: Mymanidae), an egg parasitoid of the rice planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Crop Protection 27(3–5):514–522
Wang D-S, He Y-R, Guo X-L, Luo Y-L (2012a) Acute toxicities and sublethal effects of some conventional insecticides on Trichogramma chilonis (Hymenoptera: Trichogrammatidae). J. Econ. Entomol. 105(4):1157–1163
Wang Y, Chen L, Yu R, Zhao X, Wu C, Cang T, Wang Q (2012b) Insecticide toxic effects on Trichogramma ostriniae (Hymenoptera: Trichogrammatidae). Pest Manag. Sci. 68(12):1564–1571
Wang Y, Yu R, Zhao X, Chen L, Wu C, Cang T, Wang Q (2012c) Susceptibility of adult Trichogramma nubilale (Hymenoptera: Trichogrammatidae) to selected insecticides with different modes of action. Crop Protection 34(0):76–82
Wang Y, Chen L, An X, Jiang J, Wang Q, Cai L, Zhao X (2013) Susceptibility to selected insecticides and risk assessment in the insect egg parasitoid Trichogramma confusum (Hymenoptera: Trichogrammatidae). J. Econ. Entomol. 106(1):142–149
Wang Y, Wu C, Cang T, Yang L, Yu W, Zhao X, Wang Q, Cai L (2014) Toxicity risk of insecticides to the insect egg parasitoid Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae). Pest Manag. Sci. 70(3):398–404
Wang Y, Chen C, Qian Y, Zhao X, Wang Q, Kong X (2015a) Toxicity of mixtures of λ-cyhalothrin, imidacloprid and cadmium on the earthworm Eisenia fetida by combination index (CI)-isobologram method. Ecotoxicol Environ Saf111(0):242–247
Wang K, Mu X, Qi S, Chai T, Pang S, Yang Y, Wang C, Jiang J (2015b) Toxicity of a neonicotinoid insecticide, guadipyr, in earthworm (Eisenia fetida). Ecotoxicol Environ Saf 114:17–22
CAS
Google Scholar
Wang K, Pang S, Mu X, Qi S, Li D, Cui F, Wang C (2015c) Biological response of earthworm, Eisenia fetida, to five neonicotinoid insecticides. Chemosphere132(0):120–126
Wang K, Qi S, Mu X, Chai T, Yang Y, Wang D, Li D, Che W, Wang C (2015d) Evaluation of the toxicity, AChE activity and DNA damage caused by imidacloprid on earthworms. Eisenia fetida Bull Environ Contam Toxicol 95(4):475–480
Wang L, Zeng L, Chen J (2015e) Impact of imidacloprid on new queens of imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae). Sci Rep 5:17938
CAS
Google Scholar
Wang L, Zeng L, Chen J (2015f) Sublethal effect of imidacloprid on Solenopsis invicta (Hymenoptera: Formicidae) Feeding, digging, and foraging behavior. Environ Entomol 44(6):1544–1552
Google Scholar
Wang C, Qian Y, Zhang X, Chen F, Zhang Q, Li Z, Zhao M (2016a) A metabolomic study of fipronil for the anxiety-like behavior in zebrafish larvae at environmentally relevant levels. Environ Pollut 211:252–258
CAS
Google Scholar
Wang C-J, Wang G, Wang X-Y, Liu M, Chuai M, Lee KKH, He X-S, Lu D-X, Yang X (2016b) Imidacloprid exposure suppresses neural crest cells generation during early chick embryo development. J Agric Food Chem 64(23):4705–4715
Wanumen AC, Carvalho GA, Medina P, Viñuela E, Adán A (2016a) Residual acute toxicity of some modern insecticides toward two mirid predators of tomato pests. J Econ Entomol 109(3):1079–1085
CAS
Google Scholar
Wanumen AC, Sánchez-Ramos I, Viñuela E, Medina P, Adán Á (2016b) Impact of feeding on contaminated prey on the life parameters of Nesidiocoris tenuis (Hemiptera: Miridae) adults. J Ins Sci 16(1):103
Google Scholar
Wegener J, Ruhnke H, Milchreit K, Kleebaum K, Franke M, Mispagel S, Bischoff G, Kamp G, Bienefeld K (2016) Secondary biomarkers of insecticide-induced stress of honey bee colonies and their relevance for overwintering strength. Ecotoxicol Environ Saf 132:379–389
CAS
Google Scholar
Wessler I, Gärtner H-A, Michel-Schmidt R, Brochhausen C, Schmitz L, Anspach L, Grünewald B, Kirkpatrick CJ (2016) Honeybees produce millimolar concentrations of non-neuronal acetylcholine for breeding: possible adverse effects of neonicotinoids. PLoS One 11(6):e0156886
Google Scholar
Wettstein FE, Kasteel R, Garcia Delgado MF, Hanke I, Huntscha S, Balmer ME, Poiger T, Bucheli TD (2016) Leaching of the neonicotinoids thiamethoxam and imidacloprid from sugar beet seed dressings to subsurface tile drains. J Agric Food Chem 64(33):6407–6415
CAS
Google Scholar
Whitehorn PR, Cook N, Blackburn CV, Gill SM, Green J, Shuker DM (2015) Sex allocation theory reveals a hidden cost of neonicotinoid exposure in a parasitoid wasp. Proc R Soc B 282:1807
Google Scholar
Williams L III, Price LD, Manrique V (2003) Toxicity of field-weathered insecticide residues to Anaphes iole (Hymenoptera: Mymaridae), an egg parasitoid of Lygus lineolaris (Heteroptera: Miridae), and implications for inundative biological control in cotton. Biol. Control 26(3):217–223
Williams L III, Price L (2004) A space-efficient contact toxicity bioassay for minute Hymenoptera, used to test the effects of novel and conventional insecticides on the egg parasitoids Anaphes iole and Trichogramma pretiosum. BioControl 49(2):163–185
Williams GR, Troxler A, Retschnig G, Roth K, Yañez O, Shutler D, Neumann P, Gauthier L (2015) Neonicotinoid pesticides severely affect honey bee queens. Sci Rep 5:14621
CAS
Google Scholar
Williamson SM, Willis SJ, Wright GA (2014) Exposure to neonicotinoids influences the motor function of adult worker honeybees. Ecotoxicology 23(8):1409–1418
CAS
Google Scholar
WoodcockBA, BullockJM, ShoreRF, HeardMS, PereiraMG, RedheadJ, RiddingL, DeanH, SleepD, HenrysP and others. (2017). Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science356(6345):1393–1395
Woodcock BA, Isaac NJB, Bullock JM, Roy DB, Garthwaite DG, Crowe A, Pywell RF (2016) Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat Commun 7:12459
CAS
Google Scholar
WormB, BarbierEB, BeaumontN, DuffyJE, FolkeC, HalpernBS, JacksonJBC, LotzeHK, MicheliF, PalumbiSR and others. (2006). Impacts of biodiversity loss on ocean ecosystem services. Science314(5800):787–790
Wright GA, Softley S, Earnshaw H (2015) Low doses of neonicotinoid pesticides in food rewards impair short-term olfactory memory in foraging-age honeybees. Sci Rep 5:15322
CAS
Google Scholar
Wu JY, Anelli CM, Sheppard WS (2011) Sub-lethal effects of pesticide residues in brood comb on worker honey bee (Apis mellifera) development and longevity. PLoS One 6(2):e14720
CAS
Google Scholar
Wu MC, Chang YW, Lu KH, Yang EC (2017) Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage. Insect Biochem Mol Biol 88:12–20
CAS
Google Scholar
Wu-Smart J, Spivak M (2016) Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development. Sci Rep 6:32108
CAS
Google Scholar
Wu G, Miyata T, Kang CY, Xie LH (2007) Insecticide toxicity and synergism by enzyme inhibitors in 18 species of pest insect and natural enemies in crucifer vegetable crops. Pest Manag. Sci. 63(5):500–510
Wu G, Jiang SR (2004) Susceptibility to insecticides and enzymatic characteristics in the parasitoid Apanteles plutellae Kurdj. (Hymenoptera: Braconidae) and its host Plutella xylostella (L.) (Lepidoptera: Yponomeutidae). Kunchong Xuebao 47:25–32
Wu G, Jiang S, Miyata T (2004) Effects of synergists on toxicity of six insecticides in parasitoid Diaeretiella rapae (Hymenoptera: Aphidiidae). J. Econ. Entomol. 97(6):2057–2066
Xiao D, Zhao J, Guo X, Chen H, Qu M, Zhai W, Desneux N, Biondi A, Zhang F, Wang S (2016) Sublethal effects of imidacloprid on the predatory seven-spot ladybird beetle Coccinella septempunctata. Ecotoxicology 25(12):1782–1793
CAS
Google Scholar
Xue M, Li Q (2002) Studies on selective toxicity of six insecticides between green peach aphid and ladybirds. Entomologia Sinica 9:17–22
Google Scholar
Yan L, Gong C, Zhang X, Zhang Q, Zhao M, Wang C (2016) Perturbation of metabonome of embryo/larvae zebrafish after exposure to fipronil. Environ Toxicol Pharmacol 48:39–45
CAS
Google Scholar
Yang E-C, Chang H-C, Wu W-Y, Chen Y-W (2012) Impaired olfactory associative behavior of honeybee workers due to contamination of imidacloprid in the larval stage. PLoS One 7(11):e49472
CAS
Google Scholar
YaoF-L, ZhengY, ZhaoJ-W, DesneuxN, HeY-X, WengQ-Y. (2015). Lethal and sublethal effects of thiamethoxam on the whitefly predator Serangium japonicum (Coleoptera: Coccinellidae) through different exposure routes. Chemosphere128(0):49–55
Yasuda M, Sakamoto Y, Goka K, Nagamitsu T, Taki H (2017) Insecticide susceptibility in Asian honey bees (Apis cerana (Hymenoptera: Apidae)) and implications for wild honey bees in Asia. J Econ Entomol 110(2):447–452
CAS
Google Scholar
Youn YN, Seo MJ, Shin JG, Jang C, Yu YM (2003) Toxicity of greenhouse pesticides to multicolored Asian lady beetles, Harmonia axyridis (Coleoptera: Coccinellidae). Biol Control 28(2):164–170
CAS
Google Scholar
Yu Y, Shen G, Zhu H, Lu Y (2010) Imidacloprid-induced hormesis on the fecundity and juvenile hormone levels of the green peach aphid Myzus persicae (Sulzer). Pestic Biochem Physiol 98(2):238–242
CAS
Google Scholar
Zaller JG, König N, Tiefenbacher A, Muraoka Y, Querner P, Ratzenböck A, Bonkowski M, Koller R (2016) Pesticide seed dressings can affect the activity of various soil organisms and reduce decomposition of plant material. BMC Ecol 16(1):37
Google Scholar
Zaluski R, Kadri SM, Alonso DP, Martins Ribolla PE, de Oliveira Orsi R (2015) Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses. Environ Toxicol Chem 34(5):1062–1069
CAS
Google Scholar
Zhang B, Xu Z, Zhang Y, Shao X, Xu X, Cheng J, Li Z (2015) Fipronil induces apoptosis through caspase-dependent mitochondrial pathways in Drosophila S2 cells. Pestic Biochem Physiol 119:81–89
CAS
Google Scholar
Zhang P, Zhang X, Zhao Y, Wei Y, Mu W, Liu F (2016b) Effects of imidacloprid and clothianidin seed treatments on wheat aphids and their natural enemies on winter wheat. Pest Manag Sci 72(6):1141–1149
CAS
Google Scholar
Zhang Z, Zhang X, Wang Y, Zhao Y, Lin J, Liu F, Mu W (2016a) Nitenpyram, dinotefuran and thiamethoxam used as seed treatments act as efficient controls against Aphis gossypii via high residues in cotton leaves. J Agric Food Chem 64(49):9276–9285
CAS
Google Scholar
Zhao X, Wu C, Wang Y, Cang T, Chen L, Yu R, Wang Q (2012) Assessment of toxicity risk of insecticides used in rice ecosystem on Trichogramma japonicum, an egg parasitoid of rice Lepidopterans. J. Econ. Entomol. 105(1):92–101