Skip to main content
Log in

Highly efficient electro-oxidation catalyst under ultra-low voltage for degradation of aspirin

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A novel cryptomelane-Ir (cry-Ir) electrode is prepared for Ir to enter into the cryptomelane (named as cry-Mn) structure and used for aspirin degradation. This catalyst can efficiently reduce the Ir usage from 85 to 34%. Also, the onset potential of cry-Ir is about 1.40 V and the over potential is about 0.34 V at 10 mA cm−2, indicating that cry-Ir has an excellent oxygen evolution reaction (OER) activity to produce oxidizing species and can decrease electrolytic voltage during the electro-oxidation process. So, the electrical efficiency per log order (EE/O) for cry-Ir electrode is only 5% of PbO2 electrode, which is the best electrode for organic degradation. Also, cry-Ir has large tunnel size which favors insertion of aspirin molecule into cry-Ir structure and enhances the contact between reactive intermediates and the contaminant. Using cry-Ir as anode, 100% aspirin removal and 55% chemical oxygen demand (COD) removal could be obtained at 4 V. We also compare cry-Ir electrode with IrO2 and find that IrO2 anode can only eliminate 20% aspirin under the same condition. As a result, cry-Ir is a promising anode material for organic pollutant degradation.

Aspirin removal after 4h under different voltages. Aspirin removal on IrO2/Ti-f and cry-Ir/Ti-f after 4h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • And SC, Roark JL, ND, Suib SL (1997) Sol-gel route to the tunneled manganese oxide Cryptomelane. Chem Mater 9:750–754

  • Bound JP, Voulvoulis N (2004) Pharmaceuticals in the aquatic environment--a comparison of risk assessment strategies. Chemosphere 56:1143–1155

    Article  CAS  Google Scholar 

  • Chen R, Huang Y, Liang Y, Tsai D, Chi Y, Kai J (2003) Growth control and characterization of vertically aligned IrO2 nanorods. J Mater Chem 13:2525

    Article  CAS  Google Scholar 

  • Dai Q, Xia Y, Chen J (2015) Mechanism of enhanced electrochemical degradation of highly concentrated aspirin wastewater using a rare earth la-Y co-doped PbO2 electrode. Electrochim Acta 188:871–881

    Article  Google Scholar 

  • Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental Health Perspectives 107(Suppl 6):907

    Article  CAS  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  • Gao T, Glerup M, Krumeich F, Nesper R, Fjellvåg H, Norby P (2008) Microstructures and spectroscopic properties of Cryptomelane-type manganese dioxide Nanofibers. J Phys Chem C 112:13134–13140

    Article  CAS  Google Scholar 

  • Gorlin Y, Jaramillo TF (2010) A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J Am Chem Soc 132:13612–13614

    Article  CAS  Google Scholar 

  • He Y, Huang W, Chen R, Zhang W, Lin H, Li H (2015) Anodic oxidation of aspirin on PbO2, BDD and porous Ti/BDD electrodes: mechanism, kinetics and utilization rate. Sep Purif Technol 156:124–131

    Article  CAS  Google Scholar 

  • Jalife-Jacobo H, Feria-Reyes R, Serrano-Torres O, Gutiérrez-Granados S, Peralta-Hernández JM (2016) Diazo dye Congo red degradation using a boron-doped diamond anode: an experimental study on the effect of supporting electrolytes. J Hazard Mater 319:78–83

    Article  CAS  Google Scholar 

  • Joss A, Zabczynski S, Göbel A, Hoffmann B, Löffler D, Mcardell CS, Ternes TA, Thomsen A, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40:1686–1696

    Article  CAS  Google Scholar 

  • Kasprzyk-Hordern B (2010) ChemInform abstract: pharmacologically active compounds in the environment and their chirality. ChemInform 39:4466–4503

    CAS  Google Scholar 

  • Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417

    Article  CAS  Google Scholar 

  • Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y (2012) Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 3:399–404

    Article  CAS  Google Scholar 

  • Li W, Nanaboina V, Chen F, Korshin GV (2015) Removal of polycyclic synthetic musks and antineoplastic drugs in ozonated wastewater: quantitation based on the data of differential spectroscopy. J Hazard Mater 304:242–250

    Article  Google Scholar 

  • Mcclellan K, Halden RU, Ternes T, Gunten UV (2010) Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Res 44:658–668

    Article  CAS  Google Scholar 

  • Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109:6541–6569

    Article  CAS  Google Scholar 

  • Rodarte-Morales AI, Feijoo G, Moreira MT, Lema JM (2011) Degradation of selected pharmaceutical and personal care products (PPCPs) by white-rot fungi. World J Microbiol Biotechnol 27:1839–1846

    Article  Google Scholar 

  • Sardar K, Petrucco E, Hiley CI, Sharman JDB, Wells PP, Russell AE, Kashtiban RJ, Sloan J, Walton RI (2014) Water-splitting Electrocatalysis in acid conditions using Ruthenate-Iridate Pyrochlores. Angew Chem Int Ed Engl 53:10960–10964

    Article  CAS  Google Scholar 

  • Shan CC, Tsai D, Huang YS, Jian S, Liang CC (2007) Pt−Ir−IrO2NT Thin-Wall Electrocatalysts derived from IrO2 nanotubes and their catalytic activities in methanol oxidation. Chem Mater 19:424–431

    Article  CAS  Google Scholar 

  • Smital T, Luckenbach T, Sauerborn R, Hamdoun AM, Vega RL, Epel D (2004) Emerging contaminants—pesticides, PPCPs, microbial degradation products and natural substances as inhibitors of multixenobiotic defense in aquatic organisms. Mutat Res Fundam Mol Mech Mutagen 552:101–117

    Article  CAS  Google Scholar 

  • Sun W, Song Y, Gong XQ, Cao L, Yang J (2015) An efficiently tuned d-orbital occupation of IrO2 by doping cu for enhancing oxygen evolution reaction activity. Chem Sci 6:4993–4999

    Article  CAS  Google Scholar 

  • Sun W, Cao L, Yang J (2016) Conversion of inert Cryptomelane-type manganese oxide into a highly efficient oxygen evolution catalyst via limited Ir doping. J Mater Chem A 4:12561–12570

    Article  CAS  Google Scholar 

  • Uranga-Flores A, Rosa-Júarez CDL, Gutierrez-Granados S, Moura DCD, Martínez-Huitle CA, Hernández JMP (2015) Electrochemical promotion of strong oxidants to degrade acid red 211: effect of supporting electrolytes. J Electroanal Chem 738:84–91

    Article  CAS  Google Scholar 

  • Wang J, Chu L (2016) Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: an overview. Radiat Phys Chem 125:56–64

    Article  CAS  Google Scholar 

  • Wudarska E, Chrzescijanska E, Kusmierek E, Rynkowski J (2013) Voltammetric studies of acetylsalicylic acid electrooxidation at platinum electrode. Electrochim Acta 93:189–194

    Article  CAS  Google Scholar 

  • Xia Y, Dai Q, Chen J (2015a) Electrochemical degradation of aspirin using a Ni doped PbO 2 electrode. J Electroanal Chem 744:117–125

    Article  CAS  Google Scholar 

  • Xia Y, Dai Q, Weng M, Peng Y, Luo J, Meng X, Luo X, Chen J, Crittenden J (2015b) Fabrication and electrochemical treatment application of an al-doped PbO2Electrode with high oxidation capability, oxygen evolution potential and reusability. J Electrochem Soc 162:258–262

    Article  Google Scholar 

  • Zhang T, Zhang X, Ng J, Yang H, Liu J, Sun DD (2011) Fabrication of magnetic cryptomelane-type manganese oxide nanowires for water treatment. Chem Commun 47:1890

    Article  CAS  Google Scholar 

  • Zwiener C, Seeger S, Glauner T, Frimmel FH (2002) Metabolites from the biodegradation of pharmaceutical residues of ibuprofen in biofilm reactors and batch experiments. Anal Bioanal Chem 372:569–575

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Yang.

Additional information

Responsible editor: Vítor Pais Vilar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, X., Sun, W., Cao, L. et al. Highly efficient electro-oxidation catalyst under ultra-low voltage for degradation of aspirin. Environ Sci Pollut Res 24, 25881–25888 (2017). https://doi.org/10.1007/s11356-017-0207-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0207-8

Keywords

Navigation