Skip to main content

Advertisement

Log in

In situ Electrochemical Restructuring Integrating Corrosion Engineering to Fabricate Zn Nanosheets for Efficient CO2 Electroreduction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Electrocatalytic CO2 conversion to value-added chemicals is a fascinating strategy for the sustainable recycling of greenhouse gas while developing a facile synthesis method for highly efficient electrocatalysts remains a great challenge. Herein, the spontaneous alkali corrosion combined with in situ electrochemical restructuring strategy was developed to fabricate the self-supporting Zn nanosheets array (Zn NSs) on Zn foil for CO2 electroreduction. The in situ transformed two-dimensional Zn NSs provide larger active area and show faster reaction kinetics and electron transfer rate compared with Zn nanoparticles and Zn foil, thus exhibiting outstanding performance for electrocatalytic CO2 to CO: jCO is 9.9 mA cm−2 and 19.8 mA cm−2 at −0.9 and −1.0 V vs. RHE, respectively; Faraday efficiency (FE) of CO reaches 92% at −0.9 V vs. RHE; the stability can remain 14 h at −0.9 V vs. RHE. This work provides a facile and low-energy-consumption method to fabricate efficient electrocatalysts for CO2 recycling.

Graphical Abstract

The present work presents simple spontaneous corrosion and in situ electrochemical restructuring strategy to get Zn nanosheets for electrocatalytic reduction of carbon dioxide, featuring its synthetic strategy and electrocatalytic CO2 reduction performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.R. Allen, D.J. Frame, C. Huntingford, C.D. Jones, J.A. Lowe, M. Meinshausen, N. Meinshausen, Nature 458, 1163–1166 (2009)

    Article  CAS  Google Scholar 

  2. J. Liang, Q. Wu, Y.B. Huang, R. Cao, EnergyChem 3, 100064 (2021)

    Article  CAS  Google Scholar 

  3. P. Prabhu, V. Jose, J.-M. Lee, Adv. Funct. Mater. 30, 1910768 (2020)

    Article  CAS  Google Scholar 

  4. P. Saha, S. Amanullah, A. Dey, Acc. Chem. Res. 55, 134–144 (2022)

    Article  CAS  Google Scholar 

  5. S. Amanullah, P. Saha, A. Nayek, M.E. Ahmed, A. Dey, Chem. Soc. Rev. 50, 3755–3823 (2021)

    Article  CAS  Google Scholar 

  6. Z. Geng, X. Kong, W. Chen, H. Su, Y. Liu, F. Cai, G. Wang, J. Zeng, Angew. Chem. Int. Ed. 57, 6054–6059 (2018)

    Article  CAS  Google Scholar 

  7. M. Morimoto, N. Fujita, Y. Takatsuji, T. Haruyama, Electrocatalysis 13, 72–80 (2022)

    Article  CAS  Google Scholar 

  8. Y. Huang, X. Mao, G. Yuan, D. Zhang, B. Pan, J. Deng, Y. Shi, N. Han, C. Li, L. Zhang, L. Wang, L. He, Y. Li, Y. Li, Angew. Chem. Int. Ed. 60, 15844–15848 (2021)

    Article  CAS  Google Scholar 

  9. M.B. Ross, P. De Luna, Y. Li, C.-T. Dinh, D. Kim, P. Yang, E.H. Sargent, Nat. Catal. 2, 648–658 (2019)

    Article  CAS  Google Scholar 

  10. X. Zou, M. Liu, J. Wu, P.M. Ajayan, J. Li, B. Liu, B.I. Yakobson, ACS Catal. 7, 6245–6250 (2017)

    Article  CAS  Google Scholar 

  11. J.T. Song, H. Ryoo, M. Cho, J. Kim, J.-G. Kim, S.-Y. Chung, J. Oh, Adv. Energy Mater. 7, 1601103 (2017)

    Article  Google Scholar 

  12. C. Li, H. Xiong, M. He, B. Xu, Q. Lu, ACS Catal. 11, 12029–12037 (2021)

    Article  CAS  Google Scholar 

  13. S. Liu, X.-Z. Wang, H. Tao, T. Li, Q. Liu, Z. Xu, X.-Z. Fu, J.-L. Luo, Nano Energy 45, 456–462 (2018)

    Article  CAS  Google Scholar 

  14. N. Meng, C. Liu, Y. Liu, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 58, 18908–18912 (2019)

    Article  CAS  Google Scholar 

  15. W. Luo, Q. Zhang, J. Zhang, E. Moioli, K. Zhao, A. Züttel, Appl. Catal. B Environ. 273, 119060 (2020)

    Article  CAS  Google Scholar 

  16. H.S. Jeon, I. Sinev, F. Scholten, N.J. Divins, I. Zegkinoglou, L. Pielsticker, B.R. Cuenya, J. Am. Chem. Soc. 140, 9383–9386 (2018)

    Article  CAS  Google Scholar 

  17. Q.H. Low, N.W.X. Loo, F. Calle-Vallejo, B.S. Yeo, Angew. Chem. Int. Ed. 58, 2256–2260 (2019)

    Article  CAS  Google Scholar 

  18. Q. Xiang, F. Li, J. Wang, W. Chen, Q. Miao, Q. Zhang, P. Tao, C. Song, W. Shang, H. Zhu, T. Deng, J. Wu, A.C.S. Appl, Mater. Interfaces 13, 10837–10844 (2021)

    Article  CAS  Google Scholar 

  19. L. Pan, T. Muhammad, L. Ma, Z.-F. Huang, S. Wang, L. Wang, J.-J. Zou, X. Zhang, Appl. Catal. B Environ. 189, 181–191 (2016)

    Article  CAS  Google Scholar 

  20. D.L.T. Nguyen, M.S. Jee, D.H. Won, H. Jung, H.-S. Oh, B.K. Min, Y.J. Hwang, ACS Sustainable Chem. Eng. 5, 11377–11386 (2017)

    Article  CAS  Google Scholar 

  21. X. Liu, M. Gong, S. Deng, T. Zhao, T. Shen, J. Zhang, D. Wang, Adv. Funct. Mater. 31, 2009032 (2021)

    Article  CAS  Google Scholar 

  22. D. Cheng, Z.-J. Zhao, G. Zhang, P. Yang, L. Li, H. Gao, S. Liu, X. Chang, S. Chen, T. Wang, G.A. Ozin, Z. Liu, J. Gong, Nat. Commun. 12, 395 (2021)

    Article  CAS  Google Scholar 

  23. Y. Chen, C.W. Li, M.W. Kanan, J. Am. Chem. Soc. 134, 19969–19972 (2012)

    Article  CAS  Google Scholar 

  24. Y. Li, L.-B. Zhang, J. Li, X.-X. Lian, J.-W. Zhu, Acta Phys. Sin., 68, (2019).

  25. D. Iqbal, A. Sarfraz, A. Erbe, Nanoscale Horiz. 3, 58–65 (2018)

    Article  CAS  Google Scholar 

  26. R. Cuscó, E. Alarcon Llado, J. Ibañez, L. Artús, J. Jimenez, B. Wang, M. Callahan, Phys. Rev. B, 75, (2007).

  27. C.M. López, K.-S. Choi, Langmuir 22, 10625–10629 (2006)

    Article  Google Scholar 

  28. Q. Li, J. Wang, Y. Cheng, K. Chu, J. Energy Chem. 54, 318–322 (2021)

    Article  CAS  Google Scholar 

  29. T. Zhang, X. Li, Y. Qiu, P. Su, W. Xu, H. Zhong, H. Zhang, J. Catal. 357, 154–162 (2018)

    Article  Google Scholar 

  30. J. Xiao, M.-R. Gao, S. Liu, J.-L. Luo, A.C.S. Appl, Mater. Interfaces 12, 31431–31438 (2020)

    Article  CAS  Google Scholar 

  31. B. Qin, Y. Li, H. Fu, H. Wang, S. Chen, Z. Liu, F. Peng, A.C.S. Appl, Mater. Interfaces 10, 20530–20539 (2018)

    Article  CAS  Google Scholar 

  32. A. D. Handoko, F. Wei, Jenndy, B. S. Yeo, Z. W. Seh, Nat. Catal., 1, 922–934 (2018).

  33. M. Dunwell, W. Luc, Y. Yan, F. Jiao, B. Xu, ACS Catal. 8, 8121–8129 (2018)

    Article  CAS  Google Scholar 

  34. T. Zhang, H. Zhong, Y. Qiu, X. Li, H. Zhang, J. Mater. Chem. A 4, 16670–16676 (2016)

    Article  CAS  Google Scholar 

  35. M. Ma, B.J. Trześniewski, J. Xie, W.A. Smith, Angew. Chem. Int. Ed. 55, 9748–9752 (2016)

    Article  CAS  Google Scholar 

  36. X. Cao, D. Tan, B. Wulan, K.S. Hui, K.N. Hui, J. Zhang, Small Methods 5, 2100700 (2021)

    Article  CAS  Google Scholar 

  37. N.J. Firet, W.A. Smith, ACS Catal. 7, 606–612 (2017)

    Article  CAS  Google Scholar 

  38. S. Zhu, B. Jiang, W.-B. Cai, M. Shao, J. Am. Chem. Soc. 139, 15664–15667 (2017)

    Article  CAS  Google Scholar 

  39. K. Ye, T. Liu, Y. Song, Q. Wang, G. Wang, Appl. Catal. B Environ. 296, 120342 (2021)

    Article  CAS  Google Scholar 

  40. D. Gao, Y. Zhang, Z. Zhou, F. Cai, X. Zhao, W. Huang, Y. Li, J. Zhu, P. Liu, F. Yang, G. Wang, X. Bao, J. Am. Chem. Soc. 139, 5652–5655 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the research start-up fund from Anhui University (S020118002/060, S020318008/015) and the National Natural Science Foundation of China (U1832189).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Yu or Shan Gao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48567 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Yu, Y., Zhao, W. et al. In situ Electrochemical Restructuring Integrating Corrosion Engineering to Fabricate Zn Nanosheets for Efficient CO2 Electroreduction. Electrocatalysis 14, 29–38 (2023). https://doi.org/10.1007/s12678-022-00767-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-022-00767-x

Keywords

Navigation