Skip to main content

Advertisement

Log in

Applicability and efficacy of diatom indices in water quality evaluation of the Chambal River in Central India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Diatom indices have gained considerable popularity in estimation of the trophic state and degree of pollution in lotic ecosystems. However, their applicability and efficacy have rarely been tested in Indian streams and rivers. In the present study, benthic diatom assemblages were sampled at 27 sites along the Chambal River in Central India. PCA revealed three groups of sites, namely, heavily polluted (HVPL), moderately polluted (MDPL), and least polluted (SANT). A total of 100 diatom taxa belonging to 40 genera were identified. Brachysira vitrea (Grunow) was the most abundant species recorded from the least polluted sites with an average relative abundance of 29.52. Nitzschia amphibia (Grunow) was representative of heavily polluted sites (average relative abundance 31.71) whereas moderately polluted sites displayed a dominance of Achnanthidium minutissimum (Kϋtzing) with an average relative abundance of 26.33. CCA was used to explore the relationship between diatom assemblage composition and environmental variables. Seventeen different diatom indices were calculated using diatom assemblage data. The relationship between measured water quality variables and index scores was also investigated. Most of the diatom indices exhibited strong correlations with water quality variables including BOD, COD, conductivity, and nutrients, particularly phosphate. Best results were obtained for TDI and IPS indices which showed a high level of resolution with respect to discrimination of sites on the basis of pollution gradients. Water quality maps for the Chambal River were hence prepared in accordance with these two indices. However, satisfactory results with respect to water quality evaluation were also obtained by the application of EPI-D and IGD indices. The present study suggests that TDI and IPS are applicable for biomonitoring of rivers of Central India. Diatom indices, which are simpler to use such as IGD, may be considered, at least for a coarser evaluation of water quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PCA:

Principal component analysis

CCA:

Canonical correspondence analysis

DCA:

Detrended correspondence analysis

HVPL:

Heavily polluted sites

MDPL:

Moderately polluted sites

SANT:

Sanctuary sites

WQI:

Water quality index

TDI:

Trophic diatom index

IPS:

Specific sensitivity pollution index

IBD:

Biological diatom index

CEE:

Commission for Economical Community index

EPI-D:

Eutrophication/pollution index

IDP:

Pampean diatom index

SLA:

Sladecek index

DESCY:

Descy’s pollution index

SHE:

Schiefele and Schreiner’s index

WAT:

Watanabe index

IGD:

Generic diatom index

DI-CH:

Swiss diatom index

SID:

Rott. saprobic index

TID:

Rott. trophic index

DO:

Dissolved oxygen

EC:

Electrical conductivity

BOD:

Biological oxygen demand

COD:

Chemical oxygen demand

References

  • Almeida SFP (2001) Use of diatoms for freshwater quality evaluation in Portugal. Limnética 20(2):205–213

    Google Scholar 

  • Antonelli M, Wetzel CE, Ector L, Teuling AJ, Pfister L (2017) On the potential for terrestrial diatom communities and diatom indices to identify anthropic disturbance in soils. Ecol Indic 75:73–81

    Article  CAS  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, 25th Edition Washington, U.S.A.

  • Archibald REM (1972) Diversity in some South African diatom associations and its relation to water quality. Water Res 6:1229–1238

    Article  Google Scholar 

  • Atazadeh I, Sharifi M, Kelly MG (2007) Evaluation of the trophic diatom index for assessing water quality in river Gharasou, Western Iran. Hydrobiologia 589:165–173

    Article  CAS  Google Scholar 

  • Bellinger BJ, Cocquyt C, O’Reilly CM (2006) Benthic diatoms as indicators of eutrophication in tropical streams. Hydrobiologia 573:75–87

    Article  CAS  Google Scholar 

  • Bere T (2015) Are diatom-based biotic indices developed in eutrophic, organically enriched waters reliable monitoring metrics in clean waters? Ecol Indic 62:312–316

    Article  CAS  Google Scholar 

  • Bere T, Tundisi JG (2011) Influence of ionic strength and conductivity on benthic diatom communities in a tropical river (Monjolinho), Sa˜o Carlos-SP, Brazil. Hydrobiologia 661:261–276

    Article  CAS  Google Scholar 

  • Besse-Lototskaya A, Verdonschot PFM, Coste M, Van de Vijver B (2011) Evaluation of European diatom trophic indices. Ecol Indic 11:456–467

    Article  Google Scholar 

  • Besse-Lototskaya A, Verdonschot PFM, Sinkeldam JA (2006) Uncertainty in diatom assessment: sampling, identification and counting variation. Hydrobiologia 566:247–260

    Article  Google Scholar 

  • Blanco S, Figueiras CC, Tudesque L, Be’cares E, Hoffmann L, Ector L (2012) Are diatom diversity indices reliable monitoring metrics? Hydrobiologia 695:199–206

    Article  CAS  Google Scholar 

  • Brown RM, McCleeland NI, Deininger RA, Tozer RG (1970) A water quality index—do we care? Water and Sewage Works 117:339–343

    Google Scholar 

  • Buwal (2002) Bundesamt Für Umwelt, Wald Und Landschaft: Methoden zur Untersuchung und Beurteilung der Fließgewässer: Kieselalgen Stufe F (flächendeckend) Entwurf Stand January, Bernoulli (in German)

  • Cemagref (1982) Etude des me’thodes biologiques d’appre´ citation quantitative de la qualite´ des eaux. Rapport Q.E. Lyon A.F. Bassin Rhoˆ ne-Me’dite’ranne’e-Corse. 218 (in French)

  • CEN. European Committee for Standardization (2001) Water quality guidance standard for the identification and enumeration of benthic diatom samples from rivers and their interpretation. European Standard. TC 230 WI 00230164

  • Census (2011) Kota Municipal Corporation Demographics Censusofindia.gov.in

  • Chaturvedi MK, Bassin JK (2010) Assessing the water quality index of water treatment plant and bore wells, in Delhi, India. Environ Monit Assess 163:449–453

    Article  CAS  Google Scholar 

  • Chessman B, Growns I, Currey J, Plunkett-Cole N (1999) Predicting diatom communities at the genus level for the rapid biological assessment of rivers. Freshw Biol 41:317–331

    Article  Google Scholar 

  • Chutter FM (1998) Research on the rapid biological assessment of water quality impacts in streams and rivers. Water Research Commission. Pretoria WRC Report No 422/1/98

  • Coste M, Ayphassorho H (1991) Étude de la qualité deseaux du Bassin Artois-Picardie àl’aide des communautés de diatomées benthiques (application des indices diatomiques). Rapport Cemagref. Bordeaux-Agence de l’Eau Artois-Picardie, Douai 227 (in French)

  • Coste M, Boutry S, Tison-Rosebery J, Delmas F (2009) Improvements of the biological diatom index (BDI): description and efficiency of the new version (BDI-2006). Ecol Indic 9:621–650

    Article  CAS  Google Scholar 

  • Dahl M, Nilsson B, Langhoff JH, Refsgaard JC (2007) Review of classification systems and new multi-scale typology of groundwater–surface water interaction. J Hydrol 344(1–2):1–16

    Article  Google Scholar 

  • De La Rey PA, Taylor JC, Laas A, Van Rensburg L, Vosloo A (2004) Determining the possible application value of diatoms as indicators of general water quality—a comparison with SASS 5. Water SA 30(3):325–332

    Google Scholar 

  • Dela-Cruz J, Pritchard T, Gordon G, Ajani P (2006) The use of periphytic diatoms as a means of assessing impacts of point source inorganic nutrient pollution in south-eastern Australia. Freshw Biol 51:951–972

    Article  CAS  Google Scholar 

  • Dell’Uomo A (1996) Assessment of water quality of an Apennine river as a pilot study. In Whitton, B. A. & E. Rott (eds), Use of algae for monitoring rivers II. Institut fu¨r Botanik, Universita¨t Innsbruck, Innsbruck 65–73

  • Dell’Uomo A, Torrisi M (2011) The eutrophication/pollution index-diatom based (EPI-D) and three new related indices for monitoring rivers: the case study of the river Potenza (the Marches, Italy). Plant Biosyst 145:331–341

    Article  Google Scholar 

  • Dell'Uomo A (1999) Use of algae for monitoring rivers in Italy: current situation and perspectives. In: Prygiel J, Whitton BA, Bukowska J (eds) Use of algae for monitoring rivers 111. Agence de l’Eau Artois-Picardie, Douai, pp 17–25

    Google Scholar 

  • Descy JP (1979) A new approach to water quality estimation using diatoms. Nova Hedwigia 64:305–323

    Google Scholar 

  • Descy JP, Coste M (1991) A test of methods for assessing water quality based on diatoms. Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 24:2112–2116

    Google Scholar 

  • Duong TT, Coste M, Feurtet-Mazel A, Dang DK, Gold C, Park YS, Boudou A (2006) Impact of urban pollution from the Hanoi area on benthic diatom communities collected from the red, Nhue and Tolich rivers (Vietnam). Hydrobiologia 563:201–216

    Article  CAS  Google Scholar 

  • Duong TT, Feurtet-Mazel A, Coste M, Dang DK, Boudou A (2007) Dynamics of diatom colonization process in some rivers influenced by urban pollution (Hanoi, Vietnam). Ecol Indic 7:839–851

    Article  Google Scholar 

  • Ehrenberg CG (1845) Novorum Generum et Specierum brevis definitio. Zusätze zu seinen letzten Mittheilung über die mikroskopischen Lebensformen von Portugall und Spanien, Süd-Afrika, Hinter-Indien, Japan und Kurdistan, und legte die folgenden Diagnosen u. s. w. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der Königlich-Preussischen Akademie der Wissenschaften zu Berlin 1845:357–377 (in German)

    Google Scholar 

  • Eloranta P, Andersson K (1998) Diatom indices in water quality monitoring of some south-Finnish rivers. Verh Int Ver Limnol 26:1213–1215

    CAS  Google Scholar 

  • Eloranta P, Soininen J (2002) Ecological status of Finnish rivers evaluated using benthic diatom communities. J Appl Phycol 14:1–7

    Article  Google Scholar 

  • European Union (2000) 2000/60/EC Directive of the European Parliament and the Council of 23 October establishing a framework for Community action in the field of water policy. OJ, L 327 (22.12.2000):1–72

  • Fawzi B, Loudiki M, Oubraim S, Sabour B, Chlaida M (2002) Impact of wastewater effluent on the diatom assemblages structure of a brackish small stream: Oued Hassar (Morocco). Limnologica 32:5465

    Article  Google Scholar 

  • Fleckenstein JH, Krause S, Hannah DM, Boano F (2010) Groundwater-surface water interactions: new methods and models to improve understanding of processes and dynamics. Adv Water Resour 33(11):1291–1295

    Article  CAS  Google Scholar 

  • Gandhi HP (1998) Fresh water diatoms of Central Gujarat. (Bishan Pal Singh, Mahendra Pal Singh, Dehradun, India) 324

  • Go’mez N, Licursi M (2001) The Pampean diatom index (IDP) for assessment of rivers and streams in Argentina. Aquat Ecol 35:173–181

    Article  Google Scholar 

  • Goma J, Ortiz R, Cambra J, Ector L (2004) Water quality evaluation in Catalonian Mediterranean rivers using epilithic diatoms as bioindicators. Vie et Milieu-Life and Environment 54:81–90

    Google Scholar 

  • Gurbuz H, Kivrak E (2002) Use of epilithic diatoms to evaluate water quality in the Karasu River of Turkey. J Environ Biol 23:239–246

    CAS  Google Scholar 

  • Hasle GR (1978) Some specific preparations: diatoms in Sournia A (Ed.), Phytoplankton manual, UNESCO, Paris 1-314

  • Hering D, Johnson RK, Kramm S, Schmutz S, Szoszkiewicz K, Verdonschot PFM (2006) Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshw Biol 51:1757–1785

    Article  Google Scholar 

  • Hill BH, Stevenson RJ, Pan YD, Herlihy AT, Kaufmann PR, Johnson CB (2001) Comparison of correlations between environmental characteristics and stream diatom assemblages characterized at genus and species levels. J N Am Benthol Soc 20:299–310

    Article  Google Scholar 

  • Hughes RM, Herlihy AT, Gerth WJ, Pan Y (2012) Estimating vertebrate, benthic macroinvertebrate, and diatom taxa richness in raftable Pacific Northwest rivers for bioassessment purposes. Environ Monit Assess 184:3185–3198

    Article  CAS  Google Scholar 

  • Hussain SA, Badola R (2001) Integrated conservation planning for Chambal River basin. Paper presented in the National Workshop on Regional Planning for Wildlife Protected Areas. India Habitat Centre, New Delhi, Wildlife Institute of India, DehraDun 1-20

  • Hussain SA, Choudhury BC (1992) The Gangetic dolphin and the status of its habitat in National Chambal Sanctuary. Proceedings of the “Seminar on conservation of river dolphins of the Indian subcontinent”. NewDelhi August 18-19

  • Hustedt F (1931–1959) Die Kieselalgen Deutschlands, Österreichs und der Schweiz. In, Rabenhorst’s Kryptogamenflora, Band 7, Teil 2, (Johnson Reprint, New York, US) 433-576 (in German)

  • Ju¨ttner I, James Chimonides P, Ormerod SJ (2010) Developing a diatom monitoring network in an urban river-basin: initial assessment and site selection. Hydrobiologia 695:137–151

    Article  CAS  Google Scholar 

  • Juttner I, Rothfritz H, Ormerod SJ (1996) Diatoms as indicators of river water quality in the Nepalese Middle Hills with consideration of the effects of habitat-specific sampling. Freshw Biol 36:475–486

    Article  Google Scholar 

  • Juttner I, Sharma S, Dahal BM, Ormerod SJ, Chimonides PJ, Cox EJ (2003) Diatoms as indicators of stream quality in the Kathmandu Valley and Middle Hills of Nepal and India. Freshw Biol 48:2065–2084

    Article  Google Scholar 

  • Kahlert M, Rašić IS (2015) Similar small-scale variation of diatom assemblages on different substrates in a mesotrophic stream. Acta Bot Croat 74(2):363–376

    CAS  Google Scholar 

  • Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater-surface water interactions: a review. Hydrol Earth Syst Sci 10(6):873–887

    Article  CAS  Google Scholar 

  • Kalyoncu H, Cicek NL, Akkoz C, Ozcelik R (2009a) Epilithic diatoms from the Darioren stream (Isparta/Turkey): biotic indices and multivariate analysis. Fresenius Environ Bull 18:1236–1242

    CAS  Google Scholar 

  • Kalyoncu H, Cicek NL, Akkoz C, Yorulmaz B (2009b) Comparative performance of diatom indices in aquatic pollution assessment. Afr J Agric Res 4:1032–1040

    Google Scholar 

  • Karr JR (2006) Seven foundations of biological monitoring and assessment. Biologia Ambientale 20(2):7–18

    Google Scholar 

  • Karr JR, Chu EW (2000) Sustaining living rivers. Hydrobiologia 422(423):1–14

    Article  Google Scholar 

  • Karr JR, Yoder CO (2004) Biological assessment and criteria improve total maximum daily load decision making. Journal of Environment Engineering 130(6):594–604

    Article  CAS  Google Scholar 

  • Karthick B, Hamilton PB, Kociolek JP (2013) An Illustrated guide to common diatoms of Peninsular India Gubbi Labs. Gubbi 206

  • Karthick B, Kociolek JP (2011) Four new centric diatoms (Bacillariophyceae) from the Western Ghats, South India. Phytotaxa 22:25–40

    Article  Google Scholar 

  • Karthick B, Taylor JC, Mahesh MK, Ramachandra TV (2010) Protocols for collection, preservation and enumeration of diatoms from aquatic habitats for water quality monitoring in India. IUP J Soil Water Sci 3(1):1–36

    Google Scholar 

  • Kelly MG (1998) Use of the trophic diatom index to monitor eutrophication in rivers. Water Res 32:236–242

    Article  CAS  Google Scholar 

  • Kelly MG, Cazaubon A, Coring E, Dell’Uomo A, Ector LB, Goldsmith et al (1998) Recommendations for the routine sampling of diatoms for water quality assessments in Europe. J Appl Phycol 10:215–224

    Article  Google Scholar 

  • Kelly MG, Whitton BA (1995) The trophic diatom index: a new index for monitoring eutrophication in rivers. J Appl Phycol 7:433–444

    Article  Google Scholar 

  • Kobayasi H, Mayama S (1982) Most pollution tolerant diatoms of severely polluted rivers in the vicinity of Tokyo. Japan J Phycol 30:188–196

    Google Scholar 

  • Kova’cs C, Kahlert M, Padisak J (2006) Benthic diatom communities along pH and TP gradients in Hungarian and Swedish streams. J Appl Phycol 18:105–117

    Article  CAS  Google Scholar 

  • Krammer K (2003) Cymbopleura, Delicata, Navicymbula, Gomphocymbellopsis and Afrocymbella. In: Lange-Bertalot, H (edition) Diatoms of Europe: diatoms of European inland waters and comparable habitats 4. (Gantner ARG, Verlag KG, Ruggell) 530

  • Krammer K, Lange-Bertalot H (1986) Bacillariophyceae 1. Teil, Naviculaceae. – In: Ettl H, Gerloff J, Heynig H, Mollenhauer D (edition): Süßwasserflora von Mitteleuropa 2(1). Fischer. Jena (Germany) 876 (in Swedish)

  • Krammer K, Lange-Bertalot H (1988) Freshwater flora of Central Europe. Bacillariophyceae 2(2) Epithemiaceae, Surirellaceae, (in German), (Gustav Fischer Verlag, Stuttgart, Germany) 596

  • Krammer K, Lange-Bertalot H (1991a) Bacillariophyceae. 4. Teil: Achnanthaceae. Kritische Erga¨nzungen zu Navicula (Lineolatae) und Gomphonema. In Ettl H, Ga¨rtner G, Gerloff J, Heynig H, Mollenhauer D [Eds.] Su¨sswasserflora von Mitteleuropa, 2 ⁄ 4. Gustav Fischer Verlag, Stuttgart, Germany 1–437 (in German)

  • Krammer K, Lange-Bertalot H (1991b) Bacillariophyceae. Die Süsswasserflora von Mitteleuropa. 2(1) Naviculaceae 1-876 mit 206 pl. 2(2) Bacillariaceae, Epithemiaceae, Surirellaceae 1-596 (1988). 2(3) Centrales, Fragilariaceae, Eunotiaceae 1-576 (1991), 2(4) Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema (Gustav Fisher Verlag, Stuttgart, Germany) 1-437 (in German)

  • Krammer K, Lange-Bertalot H (2004) Bacillariophyceae 4. Teil In. Achnanthaceae. In. Ettl H, Gerloff J, Heyning H, Mollenhauer D, (eds) Süsswasserflora von Mitteleuropa 2(4), (Spektrum Akademischer Verlag, Heidelberg, Berlin) 68 (in German)

  • Kwandrans J, Eloranta P, Kawecka B, Wojtan K (1998) Use of benthic diatom communities to evaluate water quality in rivers of southern Poland. J Appl Phycol 10:193–201

    Article  Google Scholar 

  • Lange-Bertalot H, Cavacini P, Tagliaventi N, Alfinito S (2003) Diatoms of Sardina. Biogeography–ecology–taxonomy. Iconographia Diatomologica 12 (Gantner ARG, Verlag, Ruggell KG) 438

  • Lavoie I, Campeau S, Darchambeau F, Cabana G, Dillon PJ (2008) Are diatoms good integrators of temporal variability in stream water quality? Freshw Biol 53:827–841

    Article  CAS  Google Scholar 

  • Lavoie I, Hamilton PB, Wang YK, Dillon PJ, Campeau S (2009) A comparison of stream bioassessment in Québec (Canada) using six European and North American diatom-based indices. Nova Hedwig Beih 135:37–56

    Google Scholar 

  • Lecointe CM, Coste M, Prygiel J (1993) “Omnidia”: software for taxonomy, calculation of diatom indices and inventories management. Hydrobiologia 269(270):509–513

    Article  Google Scholar 

  • Lenoir A and Coste M (1994), “Estimation de la Qualité des Eaux du Bassin Rhin-Meuse à l’aide des Communautés de Diatomées Benthiques”. Rapport Cemagref de Bordeaux, mars 1994. Agence de l’Eau Rhin-Meuse, Moulins-les-Metz, France 169 (in French)

  • Lenoir A, Coste M (1996) Development of a practical diatom index of overall water quality applicable to the French National Water Board Network. In: Whitton BA, Rott E (eds.): Use of algae for monitoring rivers II. Institut für Botanik, Univ. Innsbruck 29–43

  • Leung KMY, Merrington G, Warne MSJ, Wenning RJ (2013) Scientific derivation of environmental quality benchmarks for the protection of aquatic ecosystems: challenges and opportunities. Environ Sci Pollut Res 21(1):1–5

    Article  Google Scholar 

  • Li JA, Leung PTY, Bao VWW, Yi X, Leung KMY (2014) Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer. Ecotoxicology 23(8):1564–1573

    Article  CAS  Google Scholar 

  • Li L, Zheng B, Liu L (2010) Biomonitoring and bioindicators used for river ecosystems: definitions, approaches and trends. Procedia Environ Sci 2:1510–1524

    Article  Google Scholar 

  • Lobo EA, Callegaro VLM, Hermany G, Go’mez N, Ector L (2004) Review of the use of microalgae in South America for monitoring rivers, with special reference to diatoms. Vie et Milieu 54(2):105–114

    Google Scholar 

  • Lobo EA, Schuch M, Heinrich CG, da Costa AB, Düpont A, Wetzel CE, Ector L (2015) Development of the trophic water quality index (TWQI) for subtropical temperate Brazilian lotic systems. Environ Monit Assess 187:1–13

    Article  CAS  Google Scholar 

  • Martín G, Toja J, Sala SE, Fernandez MR, Reyes I, Casco MA (2010) Application of diatom biotic indices in the Guadalquivir River basin, a Mediterranean basin. Which one is the most appropriated? Environ Monit Assess 170:519–534

    Article  CAS  Google Scholar 

  • Maznah WOW, Mansor M (2002) Aquatic pollution assessment based on attached diatom communities in the Pinang River basin, Malaysia. Hydrobiologia 487:229–241

    Article  Google Scholar 

  • McCormick PV, Cairns JJ (1994) Algae as indicators of environmental change. J Appl Phycol 6:509–526

    Article  Google Scholar 

  • McCormick PV, Stevenson RJ (1989) Effects of snail grazing on benthic algal community structure in different nutrient environments. J N Am Benthol Soc 82:162–172

    Article  Google Scholar 

  • Mencio A, Mas-Pla J (2008) Assessment by multivariate analysis of groundwater–surface water interactions in urbanized Mediterranean streams. J Hydrol 352(3–4):355–366

    Article  Google Scholar 

  • Metzeltin D, Lange-Bertalot H (2002) Diatoms from the “island continent” Madagascar. In: Lange-Bertalot, H. (edition) Iconographia, Diatomologica 11: (Gantner ARG, Verlag KG, Ruggell) 286

  • Na Y, Erchao L, Dexiang F, Baicai X, Chaoqun W, Meiling Z, Liqiao C (2014) Correlations between zooplankton assemblages and environmental factors in the downtown rivers of Shanghai, China. Chin J Oceanol Limnol 32(6):1352–1363

    Article  CAS  Google Scholar 

  • Nair T, Chaitanya K (2013) Vertebrate fauna of the Chambal River basin, with emphasis on the National Chambal Sanctuary. India J Threatened Taxa 5(2):3620–3641

    Article  Google Scholar 

  • Nautiyal P, Mishra AS, Verma J (2015) The health of benthic diatom assemblages in lower stretchof a lesser Himalayan glacier-fed river. Mandakini J Earth Syst Sci 124(2):383–394

    Article  CAS  Google Scholar 

  • Nautiyal P, Verma J (2009) Longitudinal variation in the composition of diatom flora in a central highland river of Vindhya Region, the Ken. Bull Natl Inst Ecol 19:1–4

    Google Scholar 

  • Nautiyal R, Nautiyal P, Singh HR (1996) Community structure of cold water epiphytic diatoms in relation to substrate and flow conditions of a Himalayan river Alaknanda. J Freshw Biol 8:1–5

    Google Scholar 

  • Nautiyal R, Nautiyal P, Singh HR (2000) Species richness and diversity of epilithic diatom communities on different natural substrates in the coldwater river Alaknanda. Trop Ecol 41:255–258

    Google Scholar 

  • Ndiritu GG, Gichuki NN, Triest L (2006) Distribution of epilithic diatoms in response to environmental conditions in an urban tropical stream, Central Kenya. Biodivers Conserv 15:3267–3293

    Article  Google Scholar 

  • Neilsen DL, Brock MA, Rees GN, Baldwin DS (2003) Effects of increasing salinity on freshwater ecosystems in Australia. Aust J Bot 51:655–665

    Article  Google Scholar 

  • Newall P, Walsh CJ (2005) Response of epilithic diatom assemblages to urbanization influences. Hydrobiologia 532:53–67

    Article  Google Scholar 

  • Passy SI (2009) The relationship between local and regional diatom richness is mediated by the local and regional environment. Glob Ecol Biogeogr 18:383–391

    Article  Google Scholar 

  • Patrick R (1973) Use of algae, especially diatoms, in the assessment of water quality. In Cairns JJ & Dickson KL (eds), Biological methods for the assessment of water quality. A symposium presented at the Seventyfifth Annual Meeting American Society for Testing and Materials. ASTM, Philadelphia, Special Technical Publication 528: 76–95

  • Patrick R, Reimer CW (1966) The diatoms of the United States exclusive of Alaska and Hawaii. Vol. 1. Academy of Natural Sciences of Philadelphia, PA, USA 688

  • Pipp E (2002) A regional diatom-based trophic state indication system for running water sites in Upper Austria and its over regional applicability. Verh InternatVer Limnology 27:3376–3380

    Google Scholar 

  • Ponader KC, Charles DF, Belton TJ (2007) Diatombased TP and TN inference models and indices for monitoring nutrient enrichment of New Jersey streams. Ecol Indic 7:79–93

    Article  Google Scholar 

  • Ponader KC, Charles DF, Belton TJ, Winter DM (2008) Total phosphorus inference models and indices for coastal plain streams based on benthic diatom assemblages from artificial substrates. Hydrobiologia 610:139–152

    Article  CAS  Google Scholar 

  • Potapova M, Hamilton PB (2007) Morphological and ecological variation within the Achnanthidium minutissimum (Bacillariophyceae) species complex. J Phycol 43:561–575

    Article  Google Scholar 

  • Potapova MG, Charles DF (2002) Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. J Biogeogr 29:167–187

    Article  Google Scholar 

  • Prygiel J, Coste M (1993) The assessment of water quality in the Artois-Picardie water basin (France) by the use of diatom indices. Hydrobiol 269(279):343–349

    Article  Google Scholar 

  • Prygiel J, Coste M (1998) Mise au point de l’indice Biologique Diatome’e, un indice diatomique pratique applicable au re’seau hydrographique franc¸ais. L’Eau, l’Industrie, les Nuisances 211:40–45 (in French)

    CAS  Google Scholar 

  • Prygiel J, Coste M (2000) Guide méthodologique pour la mise en oeuvre de l’Indice Biologique Diatomées. Agence de l’Eau Artois-Picardie 134 pp + CDROM 90–354 (in French)

  • Raunio J, Soininen J (2007) A practical and sensitive approach to large river periphyton monitoring: comparative performance of methods and taxonomic levels. Boreal Environ Res 12:55–63

    Google Scholar 

  • Resende P, Azeiteiro U, Pereira MJ (2005) Diatom ecological preferences in a shallow temperate estuary (Ria de Aveiro, Western Portugal). Hydrobiologia 544:77–88

    Article  Google Scholar 

  • Resh VH (2008) Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environment Monitoring and Assessment 138:131–138

    Article  Google Scholar 

  • Rimet F (2012) Recent views on river pollution and diatoms. Hydrobiologia 683:1–24

    Article  Google Scholar 

  • Rimet F, Bouchez A (2012) Biomonitoring river diatoms: implications of taxonomic resolution. Ecol Indic 15:92–99

    Article  Google Scholar 

  • Rott E, Hofmann G, Pall K, Pfister P, Pipp E (1997) Indikationslisten fu¨r Aufwuchsalgen Teil 1: Saprobielle indikation. Bundesministerium fu¨r Land- und Forstwirtschaft, Wien, Austria 1–73 (in Frisian)

  • Rott E, Pipp E, Pfister P (2003) Diatom methods developed for river quality assessment in Austria and a cross-check against numerical trophic indication methods used in Europe. Algol Stud 110:91–115

    Article  Google Scholar 

  • Rott E, Pipp E, Pfister P, van Dam H, Ortler K, Binder N, Pall K (1998) Indikationslisten fu¨ r aufwuchsalgen in O¨ sterrichischen fliessgewa¨ssern. Teil 2: Trophieindikation. Arbeitsgruppe Hydrobotanik, Institut fu¨r Botanik, Universita ¨t Innsbruck, Austria: 1–248 (in Frisian)

  • Round FE (1991) Diatoms in river water-monitoring studies. J Appl Phycol 3:129–145

    Article  Google Scholar 

  • Round FE (1993) A review and methods for the use of epilithic diatoms for detecting and monitoring changes in river water quality. Methods for the examination of waters and associated materials. HMSO, London 1-65

  • Round FE (2004) pH scaling and diatom distribution. Diatom 20:9–12

    Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, Cambridge 747

  • Rumeau A, Coste M (1988) Initiation a` la syste’matique des diatome’es de’au douce. Bull Fr Peˆ che Piscic 309:1–69 (in French)

    Google Scholar 

  • Ryves DB, Battarbee RW, Juggins S, Fritz SC, Anderson NJ (2006) Physical and chemical predictors of diatom dissolution in freshwater and saline lake sediments in North America and West Greenland. Limnol Oceanogr 51:1355–1368

    Article  CAS  Google Scholar 

  • Sabater S (2000) Diatom communities as indicators of environmental stress in the Guadiamar river, S–W. Spain, following a major mine tailings spill. J Appl Phycol 12:113–124

    Article  CAS  Google Scholar 

  • Sabater S, Elosegi A, Dudgeon D (2013) River conservation: going against the flow to meet global challenges. In: Sabater S, Elosegi A (eds) River conservation: challenges and opportunities. Bilbao, Spain, Fundación, pp 15–38

    Google Scholar 

  • Saksena DN, Garg RK, Rao RJ (2008) Water quality and pollution status of Chambal River in National Chambal Sanctuary, Madhya Pradesh. J Environ Biol 29(5):701–710

    CAS  Google Scholar 

  • Schiefele S, Schreiner C (1991) Use of diatoms for monitoring nutrient enrichment acidification and impact salts in Germany and Austria. In Whitton BA, Rott E, Friedrich G (eds) Use of algae for monitoring rivers. Institu¨t fu¨ r Botanik, Universita¨t Innsbruck, Innsbruck 103-110

  • Schröder M, Sondermanna M, Suresa B, Hering D (2015) Effects of salinity gradients on benthic invertebrate and diatom communities in a German lowland river. Ecol Indic 57:236–248

    Article  Google Scholar 

  • Sladecek V (1986) Diatoms as indicators of organic pollution. Acta Hydrochim Hydrobiol 14:555–566

    Article  CAS  Google Scholar 

  • Solak CN, Ács É (2011) Water quality monitoring in European and Turkish rivers using dıatoms. Turk J Fish Aquat Sci 11(2):329–337

    Google Scholar 

  • Stevenson RJ, Bahls LL (1999) Periphyton protocols. In M. T. Barbour, J. Gerritsen, & B. D. Snyder (Eds.), Rapid bioassessment protocols for use in wadeable streams and rivers: Periphyton, benthic macroinvertebrates, and fish. EPA 841-B-99-002 (2nd ed). Wash United States Environ Protect Agency 6:1–6.22

  • Stevenson RJ, Pan Y (1999) The diatoms. Applications for the environmental and earth sciences. In: Stoermer E, Smol JP (eds) Assessing environmental conditions in rivers and streams with diatoms. Cambridge University Press, Cambridge, pp 11–40

    Google Scholar 

  • Stevenson RJ, Pan Y, van Dam H (2010) The diatoms: applications for the environmental and earth sciences. 2nd edition. In: Smol JP, Stoermer EF (eds) Assessing environmental conditions in rivers and streams with diatoms. Cambridge University Press, Cambridge, pp 57–85

    Google Scholar 

  • Stevenson RJ, Smol JP (2003) Use of algae in environmental assessments. Freshwater algae of North America: Ecology and Classification 775–804

  • Szulc B, Szulc K (2013) The use of the biological diatom index (BDI) for the assessment of water quality in the Pilica River, Poland. Oceanological and Hydrobiological studies. Int J Oceanogr Hydrobiol 42(2):188–194

    CAS  Google Scholar 

  • Tan X, Ma P, Xia X, Zhang Q (2013a) Spatial pattern of benthic diatoms and water quality assessment using diatom indices in a subtropical river. China Clean Soil Air Water 42:20–28

    Article  CAS  Google Scholar 

  • Tan X, Sheldon F, Bunn SE, Zhang Q (2013b) Using diatom indices for water quality assessment in a subtropical river, China. Environ Sci Pollut Res 20(6):4164–4175

    Article  CAS  Google Scholar 

  • Taylor CJ, Prygiel AV, De La Rey PA, Van Rensburg S (2007b) Can diatom-based pollution indices be used for biological monitoring in SA? A case study of the Crocodile West and Marico water management area. Hydrobiologia 592:455–464

    Article  Google Scholar 

  • Taylor JC, Janse Van Vuuren MC, Pieterse AJH (2007a) The application and testing of diatom-based indices in the Vaal and Wilge rivers, South Africa. Water SA 33:51–59

    CAS  Google Scholar 

  • ter Braak CJF (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1178

    Article  Google Scholar 

  • Tison J, Park YS, Coste M, Wasson JG, Rimet F, Ector L, Delmas F (2007) Predicting diatom reference communities at the French hydrosystem scale: a first step towards the definition of the good ecological status. Ecol Model 203:99–108

    Article  Google Scholar 

  • Torrisi M, Dell’Uomo A (2006) Biological monitoring of some Apennine rivers (central Italy) using the diatombased eutrophication/pollution index (EPI-D) compared to other European diatom indices. Diatom Res 21:159–174

    Article  Google Scholar 

  • Trivedi RC, Bhardwaj RM, Agarwal S (2008) Biological monitoring of water quality in India-needs and constraints. In: Sengupta M, Dalwani R (eds) Proceedings of Taal 2007: the 12th world Lake conference. National Institute of Hydrology, Roorkee, pp 34–43

    Google Scholar 

  • Van Dam H (1982) On the use of measures of structure and diversity in applied diatom ecology. Nova Hedwigia 73:97–115

    Google Scholar 

  • Van Dam H, Mertens A, Sinkeldam J (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Neth Journal of Aquatic Ecology 28:117–133

    Article  Google Scholar 

  • Venkatachalapathy R, Karthikeyan P (2012) Environmental impact assessment of Cauvery River with diatoms at Bhavani, Tamil Nadu, India. Int J Geol, Earth Environ Sci 2(3):36–42

    Google Scholar 

  • Vilbaste S, Truu J, Leisk Ü, Iital A (2007) Species composition and diatom indices in relation to environmental parameters in Estonian streams. Arch. Hydrobiol. Suppl., 161(3.4): 307-326

  • Walker CE, Schrock RM, Reilly TJ, Baehr AL (2005) A direct immunoassay for detecting diatoms in groundwater as an indicator of the direct influence of surface water. J Appl Phycol 17(2005):81–90

    Article  CAS  Google Scholar 

  • Walsh G, Wepener V (2009) The influence of land use on water quality and diatom community structures in urban and agriculturally stressed rivers. Water SA 35:579–594

    Article  CAS  Google Scholar 

  • Wang Q, Zhi CY, Hamilton PB, Kang FX (2009) Diatom distributions and species optima for phosphorus and current velocity in rivers from ZhuJiang Watershed within a Karst region of south-central China. Fundam Appl Limnol 175:125–141

    Article  CAS  Google Scholar 

  • Watanabe T, Asai K, Houki A (1986) Numerical estimation of organic pollution of flowing waters by using the epilithic diatom assemblage—diatom assemblage index (DIApo). Sci Total Environ 55:209–218

    Article  CAS  Google Scholar 

  • Werum M, Lange-Bertalot H (2004) Diatoms in springs from Central Europe and elsewhere under the influence of hydrogeology and anthropogenic impacts. Iconographia Diatomologica 13:1–480

    Google Scholar 

  • WFD (2000) Water Framework Directive—Directive of European Parliament and of the council 2000/60/EC—establishing a framework for community action in the field of water policy. European Union, the European Parliament and Council, Luxembourg

  • Whitaker R (2007) Gharial going extinct again. Iguana 14:24–33

    Google Scholar 

  • Wojtal AZ, Lange-Bertalot H, Nautiyal R, Verma J, Nautiyal P (2010) Achnanthidium chitrakootense spec. nov. from rivers of northern and Central India. Pol Bot J 55(1):55–64

    Google Scholar 

  • Wu N, Schmalz B, Fohrer N (2014) Study progress in riverine phytoplankton and its use as bio-indicator—a review. Austin J Hydrol 1(1):1–9

    Google Scholar 

  • Wunsam S, Cattaneo A, Bourassa N (2002) Comparing diatom species, genera and size in biomonitoring: a case study from streams in the Laurentians (Quebec, Canada). Freshw Biol 47:325–340

    Article  Google Scholar 

  • Yang Y, Cao JX, Pei GF, Liu GX (2015)  Using benthic diatom assemblages to assess human impacts on streams across a rural to urban gradient. Environ Sci Pollut Res 22:18093–18106

    Article  Google Scholar 

  • Yung MMN, Kwok KWH, Djurisic AB, Giesy JP, Leung KMY (2017) Influences of temperature and salinity on physicochemical properties and toxicity of zinc oxide nanoparticles to the marine diatom Thalassiosira pseudonana. Sci Rep 7:3662

    Article  Google Scholar 

  • Zelinka M, Marvan P (1961) Zur Präzisierung der biologischen Klassifi kation der Reinheit fl ießender Gewässer. – Archiv. Hydrobiol 57:389–407 (in German)

    Google Scholar 

  • Zong Y, Kemp AC, Yu F, Lloyd JM, Huang G, Yim WWS (2010) Diatoms from the Pearl River estuary, China and their suitability as water salinity indicators for coastal environments. Mar Micropaleontol 75:38–49

    Article  Google Scholar 

Download references

Acknowledgements

This study was possible due to the provision of funds from the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India. We would like to thank Ms. Shivangi Somvanshi (Amity University) for helping us with the statistical analysis of the data. Special thanks to Prof. RL Stevenson and Dr. Ingrid Juttner for providing answers to some conceptual questions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateek Srivastava.

Additional information

Responsible editor: Kenneth Mei Yee Leung

Electronic supplementary material

ESM 1

(DOCX 10.8 kb).

ESM 2

(DOCX 25.3 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, P., Grover, S., Verma, J. et al. Applicability and efficacy of diatom indices in water quality evaluation of the Chambal River in Central India. Environ Sci Pollut Res 24, 25955–25976 (2017). https://doi.org/10.1007/s11356-017-0166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0166-0

Keywords

Navigation