Skip to main content

Advertisement

Log in

Risk assessment of agriculture impact on the Frío River watershed and Caño Negro Ramsar wetland, Costa Rica

  • Ecotoxicology in Tropical Regions
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The Caño Negro Ramsar wetland is a conservation area of great natural and societal value, located in the lower part of the Frío River watershed in the north of Costa Rica. Its aquatic ecosystems may be considered vulnerable to pollution due to recent changes in land use toward agriculture. In 2011 and 2012, quarterly sampling was done at ten sites located in the middle and lower sections of the Frío River Basin that pass through crop areas and later drain into Caño Negro wetland. Pesticide residues, nitrates, sediment concentrations, and diversity of benthic macroinvertebrates and fish biomarkers were studied in the selected sites. Additionally, risk of toxicity was calculated in two different ways: (1) by using a ratio of MEC to hazard concentrations threshold for 5% of species (HC5) to calculate a risk quotient (RQ), and (2) by using a ratio of MEC to available ecotoxicity data of native fish and cladocera for diazinon and ethoprophos, to obtain a risk quotient for native species (RQns). Results indicated that three out of the ten sites (rivers Thiales, Mónico, and Sabogal) showed variable levels of pollution including six different active ingredients (a.i.) of pesticide formulations (herbicides ametryn, bromacil, and diuron; insecticides cypermethrin, diazinon, and ethoprophos). Moreover, potential adverse effects on fishes in Thiales and Mónico rivers were indicated by cholinesterase (ChE) inhibition and glutathione S-transferase (GST) enhancement. Risk evaluations indicated pesticide residues of ametryn, bromacil, and ethoprophos to be exceeding the limits set by MTR, also RQ was high (>1) in 70% of the positive samples for diuron (most frequently found pesticide in water samples), cypermethrin, diazinon, and ethoprophos, and RQns was high for diazinon. Therefore, these substances might be of major concern for the ecological health of aquatic ecosystems in the middle basin of the Frío River. The most critical site was Mónico River, which had the highest pollution (75% detection samples with 3–5 a.i.) and highest calculated risk (RQ > 1 in 75% of the samples). This is also the river that most directly drains into the protected wetland. Even though pesticide pollution in this area is not as severe as in other parts of Costa Rica, it is imperative that measures are taken, particularly in the surroundings of Mónico River, in order to diminish and mitigate possible detrimental effects to biota in Caño Negro Ramsar Site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aebi H (1974) Catalase. In: Bergmayer HU (ed) Methods of enzymatic analysis. Academic, London, pp 671–684

    Google Scholar 

  • Antwi FB, Reddy GVP (2015) Toxicological effects of pyrethroids on non-target aquatic insects. Environ Toxicol Pharmacol 40:915–923

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association) (2005) Standard Methods for the Examination of Water and Wastewater, 21st Edition

  • Arias-Andrés M, Mena-Torres F, Vargas S, Solano K (2014) Sensitivity of Costa Rica’s native cladoceran Daphnia ambigua and Simocephalus serrulatus to the organophosphate pesticide ethoprophos. J Environ Biol 35:67–71

    Google Scholar 

  • Arias-Andrés MJ, Rämö R, Mena-Torres F, Ugalde R, Grandas L, Ruepert C, Castillo LE, Van den Brink P, Gunnarsson JS (2016) Lower tier toxicity risk assessment of agriculture pesticides detected on the Río Madre de Dios watershed. Costa Rica Environ Sci Pollut R. doi:10.1007/s11356-016-7875-7

    Article  Google Scholar 

  • ASTM (1999) Standard methods for measuring the toxicity of sediment-associated contaminants with freshwater invertebrates. E 1706-9b, Annual book of ASTM standards, Philadelphia

  • Bacon PR (1997) Wetlands and biodiversity. In: Hails AJ (ed) Wetlands, biodiversity and the Ramsar convention: the role of the convention on wetlands in the conservation and wise use of biodiversity. Ramsar Convention Bureau, Gland, Switzerland http://archive.ramsar.org/cda/en/ramsar-pubs-books-wetlands-biodiversity-21181/main/ramsar/1-30-101%5E21181_4000_0__#c1. Accessed 1 March 2016

    Google Scholar 

  • Beliaeff B, Burgeot T (2002) Integrated biomarker response: a useful tool for ecological risk assessment. Environ Toxicol Chem 21:1316–1322

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Braukmann U (2001) Stream acidification in South Germany—chemical and biological assessment methods and trends. Aquat Ecol 35:207–232

    Article  CAS  Google Scholar 

  • Bravo V, de la Cruz E, Herrera G, Ramírez F (2013) Pesticide use in agricultural crops as a tool for monitoring health hazards. Uniciencia 27(1):351–376 (in Spanish)

    Google Scholar 

  • Burkelipe DE, Moore MT, Holland MM (2000) Susceptibility of five nontarget organisms to aqueous diazinon exposure. Bull Environ Contam Toxico 64:114–121

    Article  Google Scholar 

  • Bussing W (1998) Freshwater fishes of Costa Rica. Int J Trop Biol 46 (Suppl 2)

  • Carazo E, Acuña G (2009) Establishment of a baseline of pesticide runoff to the Costa Rican Caribbean, Technical Report. Reducing pesticide runoff to the Caribbean Sea, GEF-REPCar Project No 802-A8–536 (in Spanish)

  • Carbonell M (1997) The Neotropical region an overview of Neotropical wetlands. In: Hails AJ (ed) Wetlands, biodiversity and the Ramsar convention: the role of the convention on wetlands in the conservation and wise use of biodiversity. Ramsar Convention Bureau, Gland, Switzerland http://archive.ramsar.org/cda/en/ramsar-pubs-books-wetlands-biodiversity-21183/main/ramsar/1-30-101%5E21183_4000_0__#c6. Accessed 1 March 2016

    Google Scholar 

  • Castillo L, Ruepert C, Solís E (2000) Pesticide residues in the aquatic environment of banana plantation areas in the North Atlantic zone of Costa Rica. Environ Toxicol Chem 19(8):1942–1950

    Article  CAS  Google Scholar 

  • Castillo L, Martínez E, Ruepert C, Savage C, Gilek M, Pinnock M, Solís E (2006) Water quality and macroinvertebrate community response following pesticide applications in a banana plantation, Limón, Costa Rica. Sci Total Environ 367:418–432

    Article  CAS  Google Scholar 

  • Castillo LE, Ruepert C, Ramírez F, Moraga G, Ballestero D, Brenes C, Vargas S, Benavides R, Mena F, Arias MJ, Gunnarsson J (2014) The Laguna Madre de Dios, a Costa Rican tropical coastal lagoon ecosystem at risk. Abstract Book, SETAC Europe 24th Annual Meeting, Basel, Switzerland

  • Chapman D (1996) Water quality assessments—a guide to use of biota, sediments and water in environmental monitoring, 2nd edn. F & FN Spon, London

    Google Scholar 

  • Christensen BT, Lauridsen TL, Ravn HW, Bayley M (2005) A comparison of feeding efficiency and swimming ability of Daphnia magna exposed to cypermethrin. Aquat Toxicol Jun 73(2):210–220

    Article  CAS  Google Scholar 

  • de la Cruz E, Castillo LE, Polk Ph, Delbeke K, Blust R, Heip C, Merck A (1998) Study of the fate and impact of organic and inorganic pollutants in the Costa Rican Coastal zone. Final report, Joint research European Union Project. No. ERB CI1*-CT94–0076

  • de la Cruz E, Pinnock M, Echeverría S, Mena F, Barata C, Ruepert C (2015) Agricultural impact on water quality and ecosystems of the lower Tempisque River Basin, Costa Rica. Abstract Book, SETAC Europe 25th Annual Meeting, Barcelona, Spain

  • Del Signore A, Hendriks AJ, Lenders YHJ, Leuven SEW, Breureyz AM (2016) Development and application of the SSD approach in scientific case studies for ecological risk assessment. Environ Toxicol Chem 35:2149–2161

    Article  CAS  Google Scholar 

  • Devin S, Burgeot T, Giambérini L, Minguez L, Pain-Devin S (2014) The integrated biomarker response revisited: optimization to avoid misuse. Environ Sci Pollut Res 21:2448–2454

    Article  CAS  Google Scholar 

  • Diepens NJ, Pfennig S, Van den Brink PJ, Gunnarsson JS, Ruepert C, Castillo LE (2014) Effect of pesticides used in banana and pineapple plantations on aquatic ecosystems in Costa Rica. J Environ Biol 35:73–84

    Google Scholar 

  • Echeverría-Sáenz S, Mena F, Pinnock M, Ruepert C, Solano K, de la Cruz E, Campos B, Sánchez-Ávila J, Lacorte S, Barata C (2012) Environmental hazards of pesticides from pineapple crop production in the Río Jiménez watershed (Caribbean coast, Costa Rica). Sci Total Environ 440:106–114

    Article  CAS  Google Scholar 

  • Echeverría-Sáenz S, Mena F, Arias-Andrés M, Vargas S, Ruepert C, Van den Brink PJ, Castillo LE, Gunnarsson JS (2016) In situ toxicity and ecological risk assessment of agro-pesticide runoff in the Madre de Dios River in Costa Rica. Environ Sci Pollut Res doi. doi:10.1007/s11356-016-7817-4

    Article  Google Scholar 

  • Ellman G, Courtney D, Andres V Jr, Featherstone R (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  • European Commission (2002) Guidance document on aquatic ecotoxicology in the context of the Directive 91/414/EEC. SANCO 3268/2001 rev.4 final. Brussels. http://ec.europa.eu/food/fs/ph_ps/pro/wrkdoc/wrkdoc10_en.pdf. Accessed 30 July 2016

  • EPA -U.S. Environmental Protection Agency (2005) Methods/indicators for determining when metals are the cause of biological impairments of rivers and streams: species sensitivity distributions and chronic exposure-response relationships from laboratory data. U.S. EPA, Office of Research and Development, National Center for Environmental Assessment, Cincinnati, Ohio

  • Fournier ML, Ramírez F, Ruepert C, Vargas S, Echeverría S (2010) Agrochemicals in horticulture and livestock ecosystems in the micro watershed Plantón and Pacayas in Cartago, Costa Rica. Technical Paper No.16 Project Plantón Pacayas, INTA-MAG Instituto Nacional de Innovación y Transferencia en Tecnología Agropecuaria, San José (in Spanish)

  • Granados P, Brenes A, Cubero LP (2005) The risks of productive reconversion in central American borders: the case of the northern part of Costa Rica. Anuario de Estudios Centroamericanos, Universidad de Costa Rica 31:93–113 (in Spanish)

    Google Scholar 

  • Guérold F, Boudot J-P, Jacquemin G, Vein D, Merlet D, Rouiller J (2000) Macroinvertebrate community loss as a result of headwater stream acidification in the Vosges Mountains (N-E France). Biodivers Conserv 9:767–783

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Hilsenhoff WL (1988) Rapid field assessment of organic pollution with a family level biotic index. J North Am Benthol Soc 7(1):65–68

    Article  Google Scholar 

  • IMN National Meteorological Institute (2011) Meteorological Bulletin. https://www.imn.ac.cr/boletin-meteorologico. Accessed 06 January 2015 (in Spanish)

  • IUCN International Union for Conservation of Nature (2006) Transboundary wetlands of Nicaragua and Costa Rica: briefing. Montes de Oca J and Siles J (eds), San José (in Spanish)

  • Knox AK, Dahlgren RA, Tate KW, Atwill ER (2008) Efficacy of natural wetlands to retain nutrient, sediment and microbial pollutants. J Environ Qual 37:1837–1846

    Article  CAS  Google Scholar 

  • Kohlmann B, Arroyo A, Springer M, Vázquez D (2015) Agrorural effects on the macroinvertebrate assemblage in a tropical river. In: Blanco JA (ed) Biodiversity in Ecosystems - Linking Structure and Function. http://www.intechopen.com/books/biodiversity-in-ecosystems-linking-structure-and-function/agrorural-ecosystem-effects-on-the-macroinvertebrate-assemblages-of-a-tropical-river.Accessed 3 March 2016

  • Kussatz G, Schudoma D, Christine T, Kirchhoff N, Rauert G (2001) Quality Target for Active Ingredients of Pesticides to Protect Inland Surface Waters. Federal Environmental Agency, Texte 08/01, Berlin

  • Laabs V, Amelung W, Pinto AA, Wantzen M, da Silva CJ, Zech W (2002) Pesticides in surface water, sediment, and rainfall of the northeastern Pantanal Basin, Brazil. J Environ Qual 31:1636–1648

    Article  CAS  Google Scholar 

  • Ledezma G (2010) Pesticide use in rice from the Caribbean of Costa Rica. IRET Internal Report, Universidad Nacional, Heredia (in Spanish)

  • Lenártová V, Holovská K, Pedrejas JR, Martínez E, Peinado J, López-Barea J, Rosival I, Košúth P (1997) Antioxidant and detoxifying fish enzymes as biomarkers of river pollution. Biomarkers 2:247–252

    Article  Google Scholar 

  • Liess M, Schulz R (1996) Chronic effects of short-term contamination with the pyrethroid insecticide fenvalerate on the caddisfly Limnephilus lunatus. Hydrobiologia 324:99–106

    Article  CAS  Google Scholar 

  • Liess M, Von der Ohe PC (2005) Analyzing effects of pesticides on invertebrate communities in streams. Environ Toxicol Chem 24(4):954–965

    Article  CAS  Google Scholar 

  • Lionetto MG, Caricato R, Calisi A and Schettino T (2011) Acetylcholinesterase inhibition as a relevant biomarker in environmental biomonitoring: new insights and perspectives. In: Ecotoxicology around the globe. Nova Science Publishers, Inc

  • Lorion CM, Kennedy BP (2009) Relationships between deforestation, riparian forest buffers and benthic macroinvertebrates in neotropic headwater streams. Freshwat Biol 54:165–180

    Article  CAS  Google Scholar 

  • Maltby L, Blake N, Brock TCM, Van den Brink PJ (2005) Insecticide species sensitivity distributions: the importance of test species selection and relevance to aquatic ecosystems. Environ Toxicol Chem 24:379–388

    Article  CAS  Google Scholar 

  • Mena F, Fernández M, Campos B, Sánchez-Ávila J, Faria M, Pinnock M, de la Cruz E, Lacorte S, Barata C (2014a) Pesticide residue analyses and biomarker responses of native costa Rican fish of the Poeciliidae and Cichlidae families to assess environmental impacts of pesticides in Palo Verde National Park. J Environ Biol 35:19–27

    CAS  Google Scholar 

  • Mena F, Azzopardi M, Pfennig S, Ruepert C, Tedengren M, Castillo LE, Gunnarsson JS (2014b) Use of cholinesterase activity as a biomarker of pesticide exposure used on costa Rican banana plantations in the native tropical fish Astyanax aeneus (Günther, 1860). J Environ Biol 35:35–42

    CAS  Google Scholar 

  • Mena F, Pfennig S, Arias M, Márquez G, Sevilla A, Protti M (2012) Acute toxicity and cholinesterase inhibition of the nematicide ethoprophos in larvae of Atractosteus tropicus (Semionotiformes: Lepisosteidae). Int J Trop Biol 60(1):361–368

    Google Scholar 

  • Miller PL, Chin Y-P (2005) Indirect photolysis promoted by natural and engineered wetland water constituents: processes leading to alachlor degradation. Environ Sci Technol 39:4454–4462

    Article  CAS  Google Scholar 

  • MINAE-S (2007) Decree N° 33903. Regulations for evaluation and classification of quality in surface water bodies. La Gaceta ,San José, Costa Rica (in Spanish)

  • Moreira SM, Moreira-Santos M, Rendon-von Osten J, da Silva EM, Ribeiro R, Guilhermino L, Soares AMVM (2010) Ecotoxicological tools for the tropics: Sublethal assays with fish to evaluate edge-of-field pesticide runoff toxicity. Ecotoxicol Environ Saf 7:893–899

    Article  CAS  Google Scholar 

  • OECD (2004) Test No. 202: Daphnia sp. Acute Immobilisation Test OECD. Guidelines for the Testing of Chemicals, Section 2, OECD Publishing

  • Oakes FD, Van Der Kraak VD (2003) Utility of TBARS assay in detecting oxidative stress in white sucker (Catostomus commersoni) populations exposed to pulp mill effluent. Aquat Toxicol 63:447–463

    Article  CAS  Google Scholar 

  • Pathiratne A, Kroon J (2016) Using sensitivity distribution approach to assess the risk of commonly detected agricultural pesticides to Australia’s tropical freshwater ecosystems. Environ Toxicol Chem 35(2):419–428

    Article  CAS  Google Scholar 

  • Petrin Z, Laudon H, Malmqvist B (2007) Does freshwater macroinvertebrate diversity along a pH-gradient reflect adaptation to low pH? Freshw Biol 52:2172–2183

    Article  CAS  Google Scholar 

  • Pfennig S (2006) Cholinesterase activity in tissues from two tropical fish species as possible indicator for pollution in costa Rican waters: final report. Graduate work in biology course. University of Hannover, Germany

    Google Scholar 

  • Poissant L, Beauvais C, Lafrance P, Deblois C (2008) Pesticides in fluvial wetlands catchments under intensive agricultural activities. Sci Total Environ 404:182–195

    Article  CAS  Google Scholar 

  • Posthuma L, Sutter GW II, Traas TP (2002) Species sensitivity distributions in ecotoxicology. Lewis Publishers, Boca Raton, Fl

    Google Scholar 

  • Ramírez F, Chaverri F, de la Cruz E, Wesseling C, Castillo LE, Bravo V (2009) Import of pesticides in Costa Rica, 1977–2006 period. IRET Technical Reports Series No.6, Universidad Nacional, Heredia (in Spanish)

  • Ramírez F (2014) Pesticides use in citrus fruits from the Caribbean of Costa Rica. IRET Internal Report, Universidad Nacional, Heredia (in Spanish)

  • Ramírez-Granados P (2013) Potential aquifer recharges determination for Costa Rica’s Frío River basin using a geographic information system. Revista Geográfica de América Central 51:15–35 (in Spanish)

    Google Scholar 

  • Rämö RA, van den Brink PJ, Ruepert C, Castillo LE, Gunnarsson JS (2016) Toxicity risk assessment of pesticides from banana plantations in the river Madre de Dios, Costa Rica using PERPEST. SSD and msPAF models. Environ Sci Pollut R. doi:10.1007/s11356-016-7375-9

    Article  Google Scholar 

  • Rico A, Van den Brink PJ (2015) Evaluating aquatic invertebrate vulnerability to insecticides based on intrinsic sensitivity, biological traits, and toxic mode of action. Environ Toxicol Chem 34(8):1907–1917

    Article  CAS  Google Scholar 

  • RIVM National Institute for Public Health and the Environment (2015) Data base. The Netherlands https://rvs.rivm.nl/zoeksysteem/ Accessed 8 October 2015 (in Dutch)

  • Rojas N, Alfaro M, Solano J, Araya C, Villalobos R (2011) Study on Costa Rican watersheds: Frío River. Instituto Meteorológico Nacional, MINAET, San José http://cglobal.imn.ac.cr/sites/default/files/documentos/cuenca_rio_Frío_0.pdf. Accessed 9 September 2015 (in Spanish)

  • Roldán-Pérez GA (2003) Bioindication of water quality in Colombia, use of BMWP/Col. Method. Ciencia y Tecnología. Ed Universidad de Antioquia, Medellín, Colombia (in Spanish)

    Google Scholar 

  • Schuler LJ, Rand GM (2008) Aquatic risk assessment of herbicides in freshwater ecosystems of South Florida. Arch Environ Contam Toxicol 54:571–583

    Article  CAS  Google Scholar 

  • Sermeño-Chicas JM, Serrano L, Springer M, Paniagua MR, Pérez D, Rivas AW, Menjívar RA, Bonilla BL, Carranza FA, Flores JM, González C, Gutiérrez PE, Hernández MA, Monterrosa AJ, Arias AY (2010) Determination of the environmental quality of waters in the rivers of El Salvador, using a family level biological index of aquatic invertebrates (IBF-SV-2010). In: Standardized methodological guide to determine the environmental quality of waters in the rivers of El Salvador, using aquatic insects. Project Universidad de El Salvador (UES) - Organización de Estados Americanos (OEA). Ed UES, San Salvador (in Spanish)

  • Solano F (2002) Degradation and environmental restoration of wetlands in Frío River lower basin, Los Chiles, Costa Rica. Master in science thesis of graduate studies program in geography. Universidad de Costa Rica, San Pedro (in Spanish)

    Google Scholar 

  • Solano FJ, Salas DM (2011) Hydrodynamic processes of sedimentation in inland lagoon systems in the northern part of Costa Rica. Revista Geográfica de América Central, Special issue EGAL 2011- Costa Rica: 1–22 (in Spanish)

  • Solomon K, Giddings JM, Mound SJ (2001) Probabilistic risk assessment of cotton pyrethroids: I. Distribution analyses of laboratory aquatic toxicity data. Environ Toxicol Chem 20:652–659

    Article  CAS  Google Scholar 

  • Springer M, Ramírez A, Hanson P (eds) (2010) Freshwater macroinvertebrates of Costa Rica I: introduction to groups of macroinvertebrate, methods, biomonitoring, Ephemeroptera, Odonata, Plecoptera, Trichoptera. Journal of Tropical Biology and Conservation 58(Suppl. 4) (in Spanish)

  • Thompson H (1999) Esterases as markers of exposure to organophosphates and carbamates. Ecotoxicology 8:369–384

    Article  CAS  Google Scholar 

  • UNA-School of Geographical Sciences (2012) Regulatory plan of Canton Los Chiles: land use maps of diagnostic studies. Project Frío River, AICE-InBIO and Municipality of Los Chiles, Heredia (in Spanish)

  • U.S. Environmental Protection Agency (1981) Acephate, aldicarb, carbophenothion, DEF, EPN, ethoprop, methyl parathion, and phorate: their acute and chronic toxicity, bioconcentration potential, and persistence as related to marine environments. EPA 600/4–81-041, Gulf Breeze, FL

  • U.S. Environmental Protection Agency (1992) Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB). Environmental Fate and Effects Division, U.S.EPA, Washington D.C. http://cfpub.epa.gov/ecotox. Accessed 15 March 2016

  • U.S. Environmental Protection Agency (2005) Reregistration Eligibility Decision (RED) for Ametryn. Office of Prevention, Pesticides and Toxic Substances. EPA 738-R-05-006

  • Van Cong N, Thanh Phuong N, Bayley M (2008) Brain cholinesterase response in the snakehead fish (Channa striata) after field exposure to diazinon. Ecotoxicol Environ Saf 71(2):314–318

    Article  CAS  Google Scholar 

  • Van den Brink PJ, Blake N, Brock TCM, Maltby L (2006) Predictive value of species sensitivity distributions for effects of herbicides in freshwater ecosystems. Hum Ecol Risk Assess 12:645–674

    Article  CAS  Google Scholar 

  • Van den Brink PJ, Crum SJH, Gylstra R, Bransen F, Cuppen JGM, Brock TCM (2009) Effects of a herbicide–insecticide mixture in freshwater microcosms: risk assessment and ecological effect chain. Environ Pollut 157:237–249

    Article  CAS  Google Scholar 

  • Verhoeven J, Setter T (2009) Agricultural use of wetlands: opportunities and limitations. Ann Bot. doi:10.1093/aob/mcp172

    Article  Google Scholar 

  • Villacis J, Harvey CA, Ibrahim M, Villanueva C (2003) Relations between tree cover and level of intensification of cattle farms in Frío River, Costa Rica. Agroforestería en las Américas 10:39–40 (in Spanish)

    Google Scholar 

  • Wijeyaratne W, Pathiratne A (2006) Acetylcholinesterase inhibition and gill lesions in Rasbora caverii, an indigenous fish inhabiting rice associated waterbodies in Sri Lanka. Ecotoxicology 15:609–619

    Article  CAS  Google Scholar 

  • Wilson PC, Wilson SB (2010) Toxicity of the herbicides bromacil and simazine to the aquatic macrophyte Vallisneria americana Michx. Environ Toxicol Chem 29:201–211

    Article  CAS  Google Scholar 

  • Wittmann F, Householder E, de Oliveira WA, Lopes A, Junk WJ, Piedade MTF (2015) Implementation of the Ramsar convention on south American wetlands: an update. Research and Reports in Biodiversity Studies 4:47–58

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Program of Regionalización Interuniversitaria of the Consejo Nacional de Rectores (CONARE). The authors wish to thank Manuel Elías Gutiérrez from El Colegio de la Frontera Sur, México, for the identification of Simocephalus semiserratus and Juliana Mora from the School of Biology, UNA, for helping perform the toxicity tests with diazinon. Also, we thank Ana Dittel for reviewing the manuscript and Geannina Moraga for cartographic design of Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María-Luisa Fournier.

Additional information

Responsible editor: Markus Hecker

Electronic supplementary material

ESM 1

(DOCX 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fournier, ML., Echeverría-Sáenz, S., Mena, F. et al. Risk assessment of agriculture impact on the Frío River watershed and Caño Negro Ramsar wetland, Costa Rica. Environ Sci Pollut Res 25, 13347–13359 (2018). https://doi.org/10.1007/s11356-016-8353-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8353-y

Keywords

Navigation