Skip to main content
Log in

Evaluation of cotton burdock (Arctium tomentosum Mill.) responses to multi-metal exposure

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Plants have immense potential for their use in the minimization of emerging environmental pollution issues. Under simulated laboratory conditions, this work investigated the growth and biochemical responses of 14-day-old cotton burdock (Arctium tomentosum Mill.) seedlings to the body burdens of multi-metals including Pb, Cu, Ni, and Zn (1.0 μM–10 mM). Biochemical traits (superoxide generation, lipid peroxidation, content of total peroxides), growth traits (axial organs growth, dry weight accumulation, leaf area), and also metal body burdens varied with types and concentrations of metals. Results indicated a significant tolerance of A. tomentosum to multi-metals that can be implicated for its potential role in the metal phytoremediation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Anjum NA, Singh HP, Khan MI, Masood A, Per T et al (2015b) Too much is bad—an appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environ Sci Pollut Res 22:3361–3382

    Article  CAS  Google Scholar 

  • Anjum NA, Sofo A, Scopa A, Roychoudhury A, Gill SS, Iqbal M, Lukatkin AS et al (2015c) Lipids and proteins—major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res 22:4099–4121

    Article  CAS  Google Scholar 

  • Anjum NA, Ahamd I, Rodrigues SM, Henriques B, Cruz N, Coelho C, Pacheco M, Duarte AC, Pereira E (2013) Eriophorum angustifolium and Lolium perenne metabolic adaptations to metals- and metalloids-induced anomalies in the vicinity of a chemical industrial complex. Environ Sci Pollut Res 20:568–581

    Article  CAS  Google Scholar 

  • Anjum NA, Duarte AC, Pereira E, Ahmad I (2015a) Juncus maritimus root-biochemical assessment for its mercury-stabilization potential in Ria de Aveiro coastal lagoon (Portugal). Environ Sci Pollut Res 22:2231–2238

    Article  CAS  Google Scholar 

  • Anjum NA, Israr M, Duarte AC, Pereira ME, Ahmad I (2014) Halimione portulacoides (L.) physiological/biochemical characterization for its adaptive responses to environmental mercury exposure. Environ Res 131:39–49

    Article  CAS  Google Scholar 

  • Anjum NA, Pereira ME, Ahmad I, Duarte AC, Umar S, Khan NA (2012) Phytotechnologies: remediation of environmental contaminants. CRC Press/Taylor and Francis Group, Boca Raton

    Book  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  Google Scholar 

  • Baderna D, Lomazzi E, Pogliaghi A, Ciaccia G, Lodi M, Benfenati E (2015) Acute phytotoxicity of seven metals alone and in mixture: are Italian soil threshold concentrations suitable for plant protection? Environ Res 140:102–111

    Article  CAS  Google Scholar 

  • Bashmakov DI (2015) Edaphotypes of Arctium tomentosum Mill. (Asteraceae, Magnoliópsida) from ecotopes with different anthropogenic loads. Povolzhskiy J Ecol 2:123–133 [English abstract]

  • Bashmakov DI, Lukatkin AS, Anjum NA, Ahmad I, Pereira E (2015) Evaluation of zinc accumulation, allocation, and tolerance in Zea mays L. seedlings: implication for zinc phytoextraction. Environ Sci Pollut Res 22(20):15443–15448

    Article  CAS  Google Scholar 

  • Bashmakov DI, Lukatkin AS, Prasad MNV (2006) Temperate weeds in Russia: sentinels for monitoring trace element pollution and possible application in phytoremediation. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment: biogeochemistry, biotechnology, and bioremediation. CRC Press/Taylor & Fransis, Boca Raton, pp. 439–450

    Google Scholar 

  • Bi Y, Tugume AK, Valkonen JPT (2012) Small-RNA deep sequencing reveals Arctium tomentosum as a natural host of Alstroemeria virus X and a new putative Emaravirus. PLoS One 7(8):e42758

    Article  CAS  Google Scholar 

  • Ernst WHO (2006) Evolution of metal tolerance in higher plants. For Snow Landsc Res 80(3):251–274

    Google Scholar 

  • Flora of North America (2006) http://efloras.org/florataxon.aspx?flora_id=1&taxon_id=200023154. Accessed 2 Feb 2015

  • Gajewska E, Sklodowska M (2007) Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals 20:27–36

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

  • Hu N, Zheng J, Ding D, Li G, Yin J, Chen X et al (2013) Screening of native hyperaccumulators at the Huayuan river contaminated by heavy metals. Biorem J 17(1):21–29

    Article  CAS  Google Scholar 

  • Kandziora-Ciupa M, Ciepał R, Nadgórska-Socha A, Barczyk G (2016) Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. needles in polluted and non-polluted sites. Ecotoxicology 25:970–981

    Article  CAS  Google Scholar 

  • Kopittke PM, Blamey FP, Asher CJ, Menzies NW (2010) Trace metal phytotoxicity in solution culture: review. J Exp Bot 61(4):945–954

  • Kralova L, Száková J, Kubík Š, Tlustoš P, Balík J (2010) The variability of arsenic and other risk element uptake by individual plant species growing on contaminated soil. Soil Sediment Contam 19(5):617–634

    Article  CAS  Google Scholar 

  • Lukatkin AS (2002) Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants: 1. Reactive oxygen species formation during plant chilling. Russ J Plant Physiol 49(5):622–627

    Article  CAS  Google Scholar 

  • Lukatkin AS, Golovanova VS (1988) Rate of lipid peroxidation in chilled leaves of heat-loving plants. Soviet Plant Physiol 35:610–616

    Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13

    Article  CAS  Google Scholar 

  • Maisto G, Manzo S, De Nicola F, Carotenuto R, Rocco A, Alfani A (2011) Assessment of the effects of Cr, Cu, Ni and Pb soil contamination by ecotoxicological tests. J Environ Monit 13:3049–3056

    Article  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trend Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Nadgórska-Socha A, Kandziora-Ciupa M, Ciepał R, Walasek K (2011) Effects of Zn, Cd, Pb on physiological response of Silene vulgaris plants from selected populations. Polish J Environ Stud 20:599–604

    Google Scholar 

  • Pošćić F, Fellet G, Vischi M, Casolo V, Schat H, Marchiol L (2015) Variation in heavy metal accumulation and genetic diversity at a regional scale among metallicolous and non-metallicolous populations of the facultative metallophyte Biscutella laevigata subsp. Laevigata Intl J Phytorem 17(5):464–475

    Article  Google Scholar 

  • Prasad MNV, Freitas HM (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3). http://www.ejbiotechnology.info/content/vol6/issue3/full/6

  • Prasad SM, Dwivedi R, Zeeshan M (2005) Growth photosynthetic electron transport, and antioxidant responses of young soybean seedlings to simultaneous exposure of nickel and UV-B stress. Photosynthetica 43:177–185

    Article  CAS  Google Scholar 

  • Sagisaka S (1976) The occurrence of peroxide in a perennial plant, Populus gelrica. Plant Physiol 57:308–309

    Article  CAS  Google Scholar 

  • Shah FUR, Ahmad N, Masood KR, Peralta-Videa JR, Ahmad FUD (2010) Heavy metal toxicity in plants. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Dordrecht, pp. 71–97

    Chapter  Google Scholar 

  • White PJ (2012) Heavy metal toxicity in plants. In: Shabala S (ed) Plant stress physiology. CAB International, Wallingford, pp. 210–237

    Chapter  Google Scholar 

  • Wilkins DS (1978) The measurement of tolerance to edaphic factors by means of root growth. New Phytol 80:623–633

    Article  CAS  Google Scholar 

Download references

Acknowledgements

WEQH, ANK, DIB, and ASL thank the Ministry of Education and Science of Russia for financing their present research through project number 6.783.2014K. NAA (SFRH/BPD/84671/2012) and EP are grateful to the Portuguese Foundation for Science and Technology (FCT) and the Aveiro University Research Institute/Centre for Environmental and Marine Studies (CESAM) (UID/AMB/50017/2013) for partial financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Waad E. Q. AL Harbawee, Alina N. Kluchagina, Naser A. Anjum, Dmitry I. Bashmakov or Alexander S. Lukatkin.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL Harbawee, W.E.Q., Kluchagina, A.N., Anjum, N.A. et al. Evaluation of cotton burdock (Arctium tomentosum Mill.) responses to multi-metal exposure. Environ Sci Pollut Res 24, 5431–5438 (2017). https://doi.org/10.1007/s11356-016-8244-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8244-2

Keywords

Navigation