Skip to main content
Log in

Kinetic modeling of antibiotic adsorption onto different nanomaterials using the Brouers–Sotolongo fractal equation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, the kinetic data of the adsorption of two antibiotics onto three nanoadsorbents was modeled using the Brouers–Sotolongo fractal model. The model parameters were calculated at different initial antibiotic concentrations using various approximations of the kinetic equation for two quantities of practical relevance: the sorption power and the half-time characteristic of the sorption. The merits of the nanomaterial were then compared in terms of their application in the elimination of dangerous antibiotic wastes. We also developed a formula to calculate the effective rate of the best adsorbent. This study presents the modeling method in detail and has a pedagogical value for similar researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altenor S, Ncibi MC, Emmanuel E, Gaspard S (2012) Textural characteristics, physiochemical properties and adsorption efficiencies of Caribbean alga Turbinaria turbinata and its derived carbonaceous materials for water treatment application. Biochem Eng J 67:35–44

    Article  CAS  Google Scholar 

  • Azizian S, Bagheri M (2014) Enhanced adsorption of Cu 2+ from aqueous solution by Ag doped nano-structured ZnO. J Mol Liq 196:198–203

    Article  CAS  Google Scholar 

  • Ben Hamissa AM, Brouers F, Ncibi MC, Seffen M (2013) Kinetic modeling study on methylene blue sorption onto Agave americana fibers: fractal kinetics and regeneration studies. Separ Sci Technol 48:2834–2842

    Article  Google Scholar 

  • Ben Hamissa AM, Brouers F, Mahjoub B, Seffen M (2007) Adsorption of textile dyes using Agave americana (L.) fibres: equilibrium and kinetics modeling. Adsorpt Sci Technol 25:311–325

    Article  CAS  Google Scholar 

  • Boparai HK, Joseph M, O’Carroll DM (2011) Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J Hazard Mater 186:458–465

    Article  CAS  Google Scholar 

  • Brouers F, Sotolongo-Costa O (2006) Generalized fractal kinetics in complex systems (application to biophysics and biotechnology). Physica A 368:165–175

    Article  Google Scholar 

  • Brouers F, Sotolongo-Costa O (2005) Relaxation in heterogeneous systems: a rare events dominated phenomenon. Phys A 356:359–374

    Article  Google Scholar 

  • Brouers F (2015) The Burr XII distribution family and the maximum entropy principle: power-law phenomena are not necessarily “nonextensive”. Open J Stat 5:730–741

    Article  Google Scholar 

  • Brouers F (2014) The fractal (BSf) kinetics equation and its approximations. J Mod Phys 5:1594–1601

    Article  Google Scholar 

  • Bulut Y, Aydın H (2006) A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 194:259–267

    Article  CAS  Google Scholar 

  • Burr IW (1942) Cumulative frequency functions. Ann Math Stat 13:215–232

    Article  Google Scholar 

  • Carlander U, Li D, Jolliet O, Emond C, Johanson G (2016) Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles. Int J Nanomedicine 11:625–640

    Article  CAS  Google Scholar 

  • Chen Z, Wang T, Jin X, Chen Z, Mallavarapu M, Naidu R (2013) Multifunctional kaolinite-supported nanoscale zero-valent iron used for the adsorption and degradation of crystal violet in aqueous solution. J Colloid Interf Sci 398:59–66

    Article  CAS  Google Scholar 

  • Cho DH, Chu KH, Kim EY (2015) A critical assessment of the use of a surface reaction rate equation to correlate biosorption kinetics. Int J Environ Sci Technol 12:2025–2034

    Article  CAS  Google Scholar 

  • Douven S, Paez CA, Gommes CJ (2015) The range of validity of sorption kinetic models. J Colloid Interf Sci 448:437–450

    Article  CAS  Google Scholar 

  • Gaspard S, Altenor S, Passe-Coutrin N, Ouensanga A, Brouers F (2006) Parameters from a new kinetic equation to evaluate activated carbons efficiency for water treatment. Water Res 40:3467–3477

    Article  CAS  Google Scholar 

  • Gaspard, S., Ncibi, M.C., (2013) Biomass for sustainable applications: pollution remediation and energy, Royal Society of Chemistry

  • Hachi M, Chergui A, Selatnia A, Cabana H (2016) Valorization of the spent biomass of Pleurotusmutilus immobilized as calcium alginate Biobeads for methylene blue biosorption. Environ Processes 3:413–430

    Article  CAS  Google Scholar 

  • Hill AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol 40:4–7

    Google Scholar 

  • Hirsch R, Ternes T, Haberer K, Kratz K-L (1999) Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109–118

    Article  CAS  Google Scholar 

  • Ho Y-S (2004) Citation reviews of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59:171–177

    Article  CAS  Google Scholar 

  • Ho Y-S, McKay G (2002) Application of kinetic models to the sorption of copper(II) onto peat. Adsorpt Sci Technol 20:797–815

    Article  CAS  Google Scholar 

  • Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Ho Y-S, Wang CC (2004) Pseudo-isotherms for the sorption of cadmium ion onto tree fern. Process Biochem 39:761–765

    Article  Google Scholar 

  • Jonscher AK, Jurlewicz A, Weron K (2003) Stochastic schemes of dielectric relaxation in correlated-cluster systems. Contemp Phys 44:329–339

    Google Scholar 

  • Jurlewicz A, Weron K (1999) A general probabilistic approach to the universal relaxation response of complex systems. Cell Mol Biol Lett 4:55–86

    Google Scholar 

  • Karapanagioti HK, Gossard CM, Strevett KA, Kolar RL, Sabatini DA (2001) Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation processes. J Contam Hydrol 48:1–21

    Article  CAS  Google Scholar 

  • Kesraoui A, Selmi T, Seffen M, Brouers F (2016) Influence of alternating current on the adsorptionof indigo carmine. Environ Sci Pollut Res. doi:10.1007/s11356-016-7201-4

    Google Scholar 

  • Kopelman R (1988) Fractal reaction kinetics. Science 241:1620–1626

    Article  CAS  Google Scholar 

  • Kyzas GZ, Deliyanni EA, Lazaridis NK (2014) Magnetic modification of microporous carbon for dye adsorption. J colloid interf sci 430:166–173

    Article  CAS  Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungliga Svenska Veteskapsakademiens Handlingar 24:1–39

    Google Scholar 

  • Lindberg R, Jarnheimer P-A, Olsen B, Johansson M, Tysklind M (2004) Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards. Chemosphere 57:1479–1488

    Article  CAS  Google Scholar 

  • Lopes EC, Anjos F, Vieira EF, Cestari AR (2003) An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg (II) with thin chitosan membranes. J Colloid Interf Sci 263:542–547

    Article  CAS  Google Scholar 

  • Lukichev AA (2016) Nonlinear relaxation functions. Physical meaning of the Jonscher’s power law. J Non-Crys Solids 442:17–21

    Article  CAS  Google Scholar 

  • Marczewski AW, Deryło-Marczewska A, Slota A (2013) Adsorption and desorption kinetics of benzene derivatives on mesoporous carbons. Adsorption 19:391–406

    Article  CAS  Google Scholar 

  • Mendyk A, Güres S, Jachowicz R, Szlęk J, Polak S, Wiśniowska B, Kleinebudde P (2015) From heuristic to mathematical modeling of drugs dissolution profiles: application of artificial neural networks and genetic programming. Comput Math Methods Med 2015:1–9

    Article  Google Scholar 

  • Mohseni-Bandpi A, Al-Musawi TJ, Ghahramani E, Zarrabi M, Mohebi S, Abdollahi Vahed S (2016) Improvement of zeolite adsorption capacity for cephalexin by coating with magnetic Fe3O4 nanoparticles. J Mol Liq 218:615–624

    Article  CAS  Google Scholar 

  • Ncibi MC, Mahjoub B, Seffen M, Brouers F, Gaspard S (2009) Sorption dynamic investigation of chromium (VI) onto Posidoniaoceanica fibres: kinetic modeling using new generalized fractal equation. Biochem Eng J 46:141–146

    Article  CAS  Google Scholar 

  • Nga NK, Thuy Hong PT, Lam TD, Huy TQ (2013) A facile synthesis of nanostructured magnesium oxide particles for enhanced adsorption performance in reactive blue 19 removal. J Colloid Interf Sci 398:210–216

    Article  CAS  Google Scholar 

  • Pereira LM (2010) Fractal pharmacokinetics. Comput Math Methods Med 11:161–184

    Article  Google Scholar 

  • Podder MS, Majumder CB (2016) Characterization and modelling of biosorptive performance of living cells of Bacillus arsenicus MTCC 4380 for the removal of As (III) and As (V). J Water Process Eng 9:135–154

    Article  Google Scholar 

  • Ranjan D, Talat M, Hasan SH (2009) Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J Hazard Mater 166:1050–1059

    Article  CAS  Google Scholar 

  • Samarghandi MR, Al-Musawi TJ, Mohseni-Bandpid A, Zarrabi M (2015) Adsorption of cephalexin fromaqueous solution using natural zeolite and zeolite coated with manganese oxide nanoparticles. J Mol Liq 211:431–441

    Article  CAS  Google Scholar 

  • Savageau MA (1995) Michaelis-Menten mechanism reconsidered: implications of fractal kinetics. J Theor Biol 176:115–124

    Article  CAS  Google Scholar 

  • Sepehr MN, Amrane A, Karimaian KA, Zarrabi M, Ghaffar HR (2014) Potential of waste pumice and surface modified pumice for hexavalent chromium removal: characterization, equilibrium, thermodynamic and kinetic study. J Taiwan Inst Chem Eng 45:635–647

    Article  CAS  Google Scholar 

  • Sobhanardakani S, Zandipak R, Khoshsafar H, Zandipak R (2016) Removal of cationic dyes from aqueous solutions using NiFe2O4 nanoparticles. J Water Supply Res T 65:67–74

    Article  Google Scholar 

  • Soori MM, Ghahramani E, Kazemian H, Al-Musawi TJ, Zarrabi M (2016) Intercalation of tetracycline in nano sheet layered double hydroxide: an insight into UV/VIS spectra analysis. J Taiwan Inst Chem Eng 63:271–285

    Article  CAS  Google Scholar 

  • Stanislavsky A, Weron K (2013) Is there a motivation for a universal behaviour in molecular populations undergoing chemical reactions? Phys Chem Chem Phys 15:15595–15601

    Article  CAS  Google Scholar 

  • Sulaymon AH, Ebrahim SE, Abdullah SM, Al-Musawi TJ (2010) Removal of lead, cadmium, and mercury ions using biosorption. Desalin Water Treat 24:344–352

    Article  CAS  Google Scholar 

  • Tuener BD, Henley BJ, Sleap SB, Sloan SW (2015) Kinetic model selection and the Hill model in geochemistry. Int J Environ Sci Technol 12:2545–2558

    Article  Google Scholar 

  • Unuabonah EI, Olu-Owolabi BI, Adebowale KO (2016) Competitive adsorption of metal ions onto goethite–humic acid-modified kaolinite clay. Int J Environ Sci Technol 13:1043–1054

    Article  CAS  Google Scholar 

  • Volesky B (2007) Biosorption and me. Water Res 41:4017–4029

    Article  CAS  Google Scholar 

  • Wang J, Hao H, Huang L, Liu Z, Chen D, Yuan Z Pharmacokinetic and pharmacodynamic integration and modeling of enrofloxacin in swine for Escherichia coli. Front Microbiol. doi:10.3389/fmicb.2016.00036

  • Weron K, Jurlewicz A, Jonscher AK (2001) Energy criterion in interacting cluster systems. IEEE Trans Dielectr Electr Insul 8:352–358

    Article  Google Scholar 

  • Wu F-C, Tseng R-L, Juang R-S (2009) Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J 150:366–373

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to professors Sara Gaspard (Guadeloupe, France) and Mongi Seffen (Sousse, Tunis) for their valuable comments. Also, our sincere thanks to the Environmental Engineering Department, College of Engineering, University of Baghdad, Iraq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansur Zarrabi.

Additional information

Communicated by: Marcus Schulz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Musawi, T.J., Brouers, F. & Zarrabi, M. Kinetic modeling of antibiotic adsorption onto different nanomaterials using the Brouers–Sotolongo fractal equation. Environ Sci Pollut Res 24, 4048–4057 (2017). https://doi.org/10.1007/s11356-016-8182-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8182-z

Keywords

Navigation