Skip to main content
Log in

Photocatalytic behaviour of WO3/TiO2-N for diclofenac degradation using simulated solar radiation as an activation source

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In this study, the photocatalytic removal of an emerging contaminant, diclofenac (DCF) sodium, was performed using the nitrogen-doped WO3/TiO2-coupled oxide catalyst (WO3/TiO2-N). The catalyst synthesis was accomplished by a sol–gel method using tetrabutyl orthotitanate (C16H36O4Ti), ammonium p-tungstate [(NH4)10H2W12O42·4H2O] and ammonium nitrate (NH4NO3) as the nitrogen source. For comparison, TiO2 and WO3/TiO2 were also prepared under similar conditions. Analysis by X-ray diffraction (XRD), N2 adsorption–desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV–Vis spectroscopy (DRS) and X-ray photoelectron spectroscopy (XPS) were conducted to characterize the synthesized materials. The photocatalytic efficiency of the semiconductors was determined in a batch reactor irradiated with simulated solar light. Residual and mineralized DCF were quantified by high-performance liquid chromatography, total organic carbon analysis and ion exchange chromatography. The results indicated that the tungsten atoms were dispersed on the surface of TiO2 as WO3. The partial substitution of oxygen by nitrogen atoms into the lattice of TiO2 was an important factor to improve the photocatalytic efficiency of WO3/TiO2. Therefore, the best photocatalytic activity was obtained with the WO3/TiO2-N0.18 catalyst, reaching 100% DCF transformation at 250 kJ m−2 and complete mineralization at 400 kJ m−2 of solar-accumulated energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Agüera A, Pérez Estrada LA, Ferrer I et al (2005) Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. J Mass Spectrom 40:908–915

    Article  Google Scholar 

  • Alahmad W, Alawi MA (2010) Kinetic study of photocatalytic degradation of several pharmaceuticals assisted by SiO2/TiO2 catalyst in solar bath system. Jordan J Pharm Sci 3:126–136

    CAS  Google Scholar 

  • Andreozzi R, Raffaele M, Nicklas P (2003) Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50:1319–1330

    Article  CAS  Google Scholar 

  • Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114:9824–9852

    Article  CAS  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T et al (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(80):269–271

    Article  CAS  Google Scholar 

  • Bai S, Liu H, Sun J et al (2015) Improvement of TiO2 photocatalytic properties under visible light by WO3/TiO2 and MoO3/TiO2 composites. Appl Surf Sci 338:61–68

    Article  CAS  Google Scholar 

  • Birben NC, Uyguner-Demirel CS, Sen-Kavurmaci S et al (2014) Comparative evaluation of anion doped photocatalysts on the mineralization and decolorization of natural organic matter. Catal Today 240:125–131

    Article  Google Scholar 

  • Bizarro M, Rodil SE (2015) Physicochemical characterization of photocatalytic materials, in: Hernández-Ramírez a and Ramírez-Medina Iliana (ed) photocatalytic semiconductors synthesis, characterization an environmental applications. Springer 4:103–153

    Article  Google Scholar 

  • Bucci R, Magri AD, Magri AL (1998) Determination of diclofenac salts in pharmaceutical formulations. Fresenius J Anal Chem 362:577–582

    Article  CAS  Google Scholar 

  • Calza P, Sakkas V, Medana C et al (2006) Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal B Environ 67:197–205

    Article  CAS  Google Scholar 

  • Chan Y-J, Kum B-G, Park Y-C et al (2014) Surface modification of TiO2 nanoparticles with phenyltrimethoxysilane in dye-sensitized solar cells. Bull Kor Chem Soc 35:415–418

    Article  Google Scholar 

  • Chen X, Burda C (2004) Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J Phys Chem B 108:15446–15449

    Article  CAS  Google Scholar 

  • Cheng H-E, Lee W-J, Hsu C-M et al (2008) Visible light activity of nitrogen-doped TiO2 thin films grown by atomic layer deposition. Electrochem Solid-State Lett 11:D81–D84

    Article  CAS  Google Scholar 

  • Cordero-García A, Guzmán-Mar JL, Hinojosa-Reyes L et al (2016) Effect of carbon doping on WO3/TiO2 coupled oxide and its photocatalytic activity on diclofenac degradation. Ceram Int 42:9796–9803

    Article  Google Scholar 

  • Czech B, Rubinowska K (2013) TiO2-assisted photocatalytic degradation of diclofenac, metoprolol, estrone and chloramphenicol as endocrine disruptors in water. Adsorption 19:619–630

    Article  CAS  Google Scholar 

  • Daous M, Iliev V, Petrov L (2014) Gold-modified N-doped TiO2 and N-doped WO3/TiO2 semiconductors as photocatalysts for UV-visible light destruction of aqueous 2,4,6-trinitrotoluene solution. J Mol Catal A Chem 392:194–201

    Article  CAS  Google Scholar 

  • Das L, Barodia SK, Sengupta S, Basu JK (2014) Aqueous degradation kinetics of pharmaceutical drug diclofenac by photocatalysis using nanostructured titania–zirconia composite catalyst. Int J Environ Sci Technol 12:317–326

    Article  Google Scholar 

  • Fischer K, Kühnert M, Gläser R, Schulze A (2015) Photocatalytic degradation and toxicity evaluation of diclofenac by nanotubular titanium dioxide–PES membrane in a static and continuous setup. RSC Adv 5:16340–16348

    Article  CAS  Google Scholar 

  • Gole JL, Stout JD, Burda C et al (2004) Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale. J Phys Chem B 108:1230–1240

    Article  CAS  Google Scholar 

  • He Y, Wu Z, Fu L et al (2003) Photochromism and size effect of WO3 and WO3–TiO2 aqueous sol. Chem Mater 15:4039–4045

    Article  CAS  Google Scholar 

  • Hernández-Ramírez A, Medina-Ramírez I (2015) Semiconducting materials. In: Hernández-Ramírez a and Ramírez-Medina Iliana (ed) photocatalytic semiconductors synthesis, characterization an environmental applications. Springer 1:1–40

    Article  Google Scholar 

  • Hock R, Mayer T, Jaegermann W (2012) P-type doping of spiro-MeOTAD with WO3 and the Spiro-MeOTAD/WO3 interface investigated by synchrotron-induced photoelectron spectroscopy. J Phys Chem C 116:18146–18154

    Article  CAS  Google Scholar 

  • Holzwarth U, Gibson N (2011) The Scherrer equation versus the “Debye-Scherrer equation”. Nat Nanotechnol 6:534. doi:10.1038/nnano.2011.145

    Article  CAS  Google Scholar 

  • Hsieh WP, Pan JR, Huang C et al (2010) Enhance the photocatalytic activity for the degradation of organic contaminants in water by incorporating TiO2 with zero-valent iron. Sci Total Environ 408:672–679

    Article  CAS  Google Scholar 

  • Ihara T (2003) Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl Catal B Environ 42:403–409

    Article  CAS  Google Scholar 

  • Iliev V, Tomova D, Rakovsky S et al (2010) Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation. J Mol Catal A Chem 327:51–57

    Article  CAS  Google Scholar 

  • Irie H, Watanabe Y, Hashimoto K (2003) Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders. J Phys Chem B 107:5483–5486

    Article  CAS  Google Scholar 

  • Ismail AA, Abdelfattah I, Helal A (2016) Ease synthesis of mesoporous WO3–TiO2 nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination. J Hazard Mater 307:43–54

    Article  CAS  Google Scholar 

  • Kanakaraju D, Motti CA, Glass BD, Oelgemöller M (2014) Photolysis and TiO2-catalysed degradation of diclofenac in surface and drinking water using circulating batch photoreactors. Environ Chem 11:51–62

    Article  CAS  Google Scholar 

  • Keen OS, Thurman EM, Ferrer I et al (2013) Dimer formation during UV photolysis of diclofenac. Chemosphere 93:1948–1956

    Article  CAS  Google Scholar 

  • Khan SUM, Al-Shahry M, Ingler WB (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science 297:2243–2245

    Article  CAS  Google Scholar 

  • Kubacka A, Bachiller-Baeza B, Colón G, Fernández-García M (2010a) Doping level effect on sunlight-driven W,N-co-doped TiO2-anatase photo-catalysts for aromatic hydrocarbon partial oxidation. Appl Catal B Environ 93:274–281

    Article  CAS  Google Scholar 

  • Kubacka A, Colón G, Fernández-García M (2010b) N- and/or W-(co)doped TiO2-anatase catalysts: effect of the calcination treatment on photoactivity. Appl Catal B Environ 95:238–244

    Article  CAS  Google Scholar 

  • Kubacka A, Colón G, Fernández-García M (2009) Cationic (V, Mo, Nb, W) doping of TiO2–anatase: a real alternative for visible light-driven photocatalysts. Catal Today 143:286–292

    Article  CAS  Google Scholar 

  • Kubacka A, Fernandez Garcia M, Colon G (2008) Nanostructured Ti–M mixed-metal oxides: toward a visible light-driven photocatalyst. J Catal 254:272–284

    Article  CAS  Google Scholar 

  • Leghari SAK, Sajjad S, Chen F, Zhang J (2011) WO3/TiO2 composite with morphology change via hydrothermal template-free route as an efficient visible light photocatalyst. Chem Eng J 166:906–915

    Article  CAS  Google Scholar 

  • Li Puma G (2003) Modeling of thin-film slurry photocatalytic reactors affected by radiation scattering. Environ Sci Technol 37:5783–5791

    Article  CAS  Google Scholar 

  • Li D, Haneda H, Ohashi N et al (2004) Synthesis of nanosized nitrogen-containing MOx–ZnO (M = W, V, Fe) composite powders by spray pyrolysis and their visible-light-driven photocatalysis in gas-phase acetaldehyde decomposition. Catal Today 93-95:895–901

    Article  CAS  Google Scholar 

  • Li H, Li J, Huo Y (2006) Highly active TiO2N photocatalysts prepared by treating TiO2 precursors in NH3/ethanol fluid under supercritical conditions. J Phys Chem B 110:1559–1565

    Article  CAS  Google Scholar 

  • Li X, Li F, Yang C, Ge W (2001) Photocatalytic activity of WOx-TiO2 under visible light irradiation. J Photochem Photobiol A Chem 141:209–217

    Article  CAS  Google Scholar 

  • Li Y, Chen L, Guo Y et al (2012) Preparation and characterization of WO3/TiO2 hollow microsphere composites with catalytic activity in dark. Chem Eng J 181-182:734–739

    Article  CAS  Google Scholar 

  • Liu B, Chen HM, Liu C et al (2013) Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J Am Chem Soc 135:9995–9998

    Article  CAS  Google Scholar 

  • Liu Y, Xie C, Li J et al (2012) New insights into the relationship between photocatalytic activity and photocurrent of TiO2/WO3 nanocomposite. Appl Catal A Gen 433-434:81–87

    Article  CAS  Google Scholar 

  • López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol-Gel Sci Technol 61:1–7

    Article  Google Scholar 

  • Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Springer, Berlin

    Book  Google Scholar 

  • Lv K, Li J, Qing X et al (2011) Synthesis and photo-degradation application of WO3/TiO2 hollow spheres. J Hazard Mater 189:329–335

    Article  CAS  Google Scholar 

  • Martínez C, Canle M, Fernández MI et al (2011) Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl Catal B Environ 107(1–2):110–118

    Article  Google Scholar 

  • Michael I, Achilleos A, Lambropoulou D et al (2014) Proposed transformation pathway and evolution profile of diclofenac and ibuprofen transformation products during (sono)photocatalysis. Appl Catal B Environ 147:1015–1027

    Article  CAS  Google Scholar 

  • Ohyama J, Yamamoto A, Teramura K et al (2011) Modification of metal nanoparticles with TiO2 and metal–support interaction in photodeposition. ACS Catal 1:187–192

    Article  CAS  Google Scholar 

  • Packer JL, Werner JJ, Latch DE et al (2003) Photochemical fate of pharmaceuticals in the environment: naproxen, diclofenac, clofibric acid, and ibuprofen. Aquat Sci - Res Across Boundaries 65:342–351

    Article  CAS  Google Scholar 

  • Pérez-Estrada LA, Maldonado MI, Gernjak W et al (2005) Decomposition of diclofenac by solar driven photocatalysis at pilot plant scale. Catal Today 101:219–226

    Article  Google Scholar 

  • Poiger T, Buser H-R, Müller MD (2001) Photodegradation of the pharmaceutical drug diclofenac in a lake: pathway, field measurements, and mathematical modeling. Environ Toxicol Chem 20:256–263

    Article  CAS  Google Scholar 

  • Ramos-Delgado NA, Gracia-Pinilla MA, Maya-Treviño L et al (2013a) Solar photocatalytic activity of TiO2 modified with WO3 on the degradation of an organophosphorus pesticide. J Hazard Mater 263-1:36–44

    Article  Google Scholar 

  • Ramos-Delgado NA, Hinojosa-Reyes L, Guzman-Mar IL et al (2013b) Synthesis by sol–gel of WO3/TiO2 for solar photocatalytic degradation of malathion pesticide. Catal Today 209:35–40

    Article  CAS  Google Scholar 

  • Rampaul A, Parkin IP, O’Neill SA et al (2003) Titania and tungsten doped titania thin films on glass; active photocatalysts. Polyhedron 22:35–44

    Article  CAS  Google Scholar 

  • Rang S, Tickner J (2009) The challenge of emerging substances of concern in the great lakes basin: a review of chemicals policies and programs in Canada and the United States. In: Strategy. http://www.perc.ca/index.php?option=com_remository&Itemid=72&func=finishdown&id=556.

  • Reddy PAK, Reddy PVL, Sharma VM et al (2010) Photocatalytic degradation of Isoproturon pesticide on C, N and S doped TiO2. J Water Resour Prot 02:235–244

    Article  CAS  Google Scholar 

  • Rengifo-Herrera JA, Mielczarski E, Mielczarski J et al (2008) Escherichia coli Inactivation by N, S co-doped commercial TiO2 powders under UV and visible light. Appl Catal B Environ 84:448–456

    Article  CAS  Google Scholar 

  • Rizzo L, Meric S, Kassinos D et al (2009) Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res 43(4):979–988

    Article  CAS  Google Scholar 

  • Saha NC, Tompkins HG (1992) Titanium nitride oxidation chemistry: an X-ray photoelectron spectroscopy study. J Appl Phys 72:3072–3079

    Article  CAS  Google Scholar 

  • Sajjad AKL, Shamaila S, Tian B et al (2009) One step activation of WOx/TiO2 nanocomposites with enhanced photocatalytic activity. Appl Catal B Environ 91:397–405

    Article  CAS  Google Scholar 

  • Sato S, Nakamura R, Abe S (2005) Visible-light sensitization of TiO2 photocatalysts by wet-method N doping. Appl Catal A Gen 284:131–137

    Article  CAS  Google Scholar 

  • Schneider J, Matsuoka M, Takeuchi M et al (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  Google Scholar 

  • Seyama T, Adachi K, Yamazaki S (2012) Kinetics of photocatalytic degradation of trichloroethylene in aqueous colloidal solutions of TiO2 and WO3 nanoparticles. J Photochem Photobiol A Chem 249:15–20

    Article  CAS  Google Scholar 

  • Shen X-Z, Liu Z-C, Xie S-M, Guo J (2009) Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination. J Hazard Mater 162:1193–1198

    Article  CAS  Google Scholar 

  • Shen Y, Xiong T, Li T, Yang K (2008) Tungsten and nitrogen co-doped TiO2 nano-powders with strong visible light response. Appl Catal B Environ 83:177–185

    Article  CAS  Google Scholar 

  • Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure Appl Chem 57:603–619

    Article  CAS  Google Scholar 

  • Tae Kwon Y, Yong Song K, In Lee W et al (2000) Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. J Catal 191:192–199

    Article  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Dedicated to professor Dr. Klaus Haberer on the occasion of his 70th birthday.1. Water Res 32:3245–3260

    Article  CAS  Google Scholar 

  • Ternes TA, Herrmann N, Bonerz M et al (2004) A rapid method to measure the solid-water distribution coefficient (Kd) for pharmaceuticals and musk fragrances in sewage sludge. Water Res 38:4075–4084

    Article  CAS  Google Scholar 

  • Thind SS, Wu G, Chen A (2012) Synthesis of mesoporous nitrogen–tungsten co-doped TiO2 photocatalysts with high visible light activity. Appl Catal B Environ 111-112:38–45

    Article  CAS  Google Scholar 

  • Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37:1061–1068

    Article  CAS  Google Scholar 

  • U.S. EPA. HEALTH AND ENVIRONMENTAL EFFECTS PROFILE FOR CARBAZOLE. U.S. Environmental Protection Agency, Washington, D.C., EPA/600/X-86/334 (NTIS PB88218789)

  • Wang W-L, Wu Q-Y, Wang Z-M et al (2015) Photocatalytic degradation of the antiviral drug Tamiflu by UV-A/TiO2: kinetics and mechanisms. Chemosphere 131:41–47

    Article  CAS  Google Scholar 

  • Wang X, Yu JC, Chen Y et al (2006) ZrO2-modified mesoporous nanocrystalline TiO2-xNx as efficient visible light photocatalysts. Environ Sci Technol 40:2369–2374

    Article  CAS  Google Scholar 

  • Wang Y, Feng C, Zhang M et al (2011) Visible light active N-doped TiO2 prepared from different precursors: origin of the visible light absorption and photoactivity. Appl Catal B Environ 104:268–274

    Article  CAS  Google Scholar 

  • Wols BA, Hofman-Caris CHM (2012) Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Res 46:2815–2827

    Article  CAS  Google Scholar 

  • Yeh CW, Wu KR, Hung CH et al (2012) Preparation of porous F-WO3/TiO2 films with visible-light photocatalytic activity by microarc oxidation. Int J Photoenergy 2012:1–9

    Article  Google Scholar 

  • Yu H, Nie E, Xu J et al (2013) Degradation of diclofenac by advanced oxidation and reduction processes: kinetic studies, degradation pathways and toxicity assessments. Water Res 47:1909–1918

    Article  CAS  Google Scholar 

  • Zhao W, Ma W, Chen C et al (2004) Efficient degradation of toxic organic pollutants with NiO/TiO2 B under visible irradiation. J Am Chem Soc 126:2–4

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL) and CONACYT (Project 181057). Spanish Ministerio de Economía and Competitividad (MINECO) and the European Funds for Regional Development (FEDER) are gratefully acknowledged for financial support through Project CTQ2013-47461-R. Special gratitude is expressed to the Facultad de Ingeniería Mecánica y Eléctrica—UANL and the Scientific and Technical Service of the University of the Balearic Islands for performing characterization studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hernández-Ramírez.

Additional information

Responsible editor: Suresh Pillai

Electronic supplementary material

ESM 1

(DOCX 332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordero-García, A., Turnes Palomino, G., Hinojosa-Reyes, L. et al. Photocatalytic behaviour of WO3/TiO2-N for diclofenac degradation using simulated solar radiation as an activation source. Environ Sci Pollut Res 24, 4613–4624 (2017). https://doi.org/10.1007/s11356-016-8157-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8157-0

Keywords

Navigation