Skip to main content
Log in

Aqueous degradation kinetics of pharmaceutical drug diclofenac by photocatalysis using nanostructured titania–zirconia composite catalyst

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

Diclofenac (DCF) is an anti-inflammatory pharmaceutical drug, and its presence in a trace amount in waste water makes severe environmental pollution. The degradation of DCF was investigated by a photocatalytic process in presence of ultra violet irradiation at room temperature using titania and titania–zirconia nanocomposite catalysts in a batch reactor. The composite catalyst was prepared by sol–gel method and characterized by X-ray diffraction, transmission electron microscopy as well as BET surface area analyzer. The effect of various process parameters such as catalyst loading, initial concentration of DCF and pH of the experimental solution was observed on the degradation of DCF. The titania–zirconia nanocomposites exhibited reasonably higher photocatalytic activity than that of anatase form of titania without zirconia. The maximum removal of DCF of about 92.41 % was achieved using Zr/Ti mass ratio of 11.8 wt% composite catalyst. A rate equation was proposed for the degradation of DCF using the composite catalyst. The values of rate constant (k c) and adsorption equilibrium constant (K 1) were found to vary with the catalyst content in the reaction mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Achilleos A, Hapeshi E, Xekoukoulotakis NP, Manztavinos D, Fatta-Kassinos D (2010) Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chem Eng J 161(1–2):53–59

    Article  CAS  Google Scholar 

  • Akpan UG, Hameed BH (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170(2–3):520–529

    Article  CAS  Google Scholar 

  • Akpan UG, Hameed BH (2010) The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl Catal A Gen 375(1):1–11

    Article  CAS  Google Scholar 

  • Ashton D, Hilton M, Thomas KV (2004) Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Total Environ 333(1–3):167–184

    Article  CAS  Google Scholar 

  • Bangun J, Adesina AA (1998) The photodegradation kinetics of aqueous sodium oxalate solution using TiO2 catalyst. Appl Catal A Gen 175(1–2):221–235

    Article  CAS  Google Scholar 

  • Bartels P, Tumpling W Jr (2007) Solar radiation influence on the decomposition process of diclofenac in surface waters. Sci Total Environ 374(1):143–155

    Article  CAS  Google Scholar 

  • Calza P, Sakkas VA, Medana C, Baiocchi C, Dimou A, Pelizzetti E, Albanis T (2006) Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl Catal B Environ 67(3–4):197–205

    Article  CAS  Google Scholar 

  • Chen PH, Jenq CH (1998) Kinetics of photocatalytic oxidation of trace organic compounds over titanium dioxide. Environ Int 24(8):871–879

    Article  CAS  Google Scholar 

  • Chen Y, Wang K, Lou L (2004) Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation. J Photoch Photobio A 163(1–2):281–287

    Article  CAS  Google Scholar 

  • Cho Y, Choi W, Haklee C, Hyeon T, Lee H (2001) Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environ Sci Technol 35(5):966–970

    Article  CAS  Google Scholar 

  • Cunningham VL, Binks SP, Olson MJ (2009) Human health risk assessment from the presence of human pharmaceuticals in the aquatic environment. Regul Toxicol Pharm 53(1):39–45

    Article  CAS  Google Scholar 

  • Evgenidou E, Konstantinou I, Fytianos K, Albanis T (2006) Study of the removal of dichlorvos and dimethoate in a titanium dioxide mediated photocatalytic process through the examination of intermediates and the reaction mechanism. J Hazard Mater B 137(2):1056–1064

    Article  CAS  Google Scholar 

  • Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93(1):341–357

    Article  CAS  Google Scholar 

  • Guettai N, Amar HA (2005) Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study. Desalination 185(1–2):427–437

    Article  CAS  Google Scholar 

  • Henschel DB (1998) Cost analysis of activated carbon versus photocatalytic oxidation for removing organic compounds from indoor air. Air Waste Manage Assoc 48(10):985–994

    CAS  Google Scholar 

  • Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95(1):69–96

    Article  CAS  Google Scholar 

  • Jacoby WA, Blake DM, Fennel JA, Boulter JE, Vargo LM, George MC, Dolberg SK (1996) Heterogeneous photocatalysis for control of volatile organic compounds in indoor air. Air Waste Manage Assoc 46(9):891–898

    Article  CAS  Google Scholar 

  • Jung KY, Park SB (2004) Photoactivity of SiO2/TiO2 and ZrO2/TiO2 mixed oxides prepared by sol–gel method. Mater Lett 58(22–23):2897–2900

    Article  CAS  Google Scholar 

  • Kaneco S, Katsumata H, Suzuki T, Ohta K (2006) Titanium dioxide mediated photocatalytic degradation of dibutyl phthalate in aqueous solution-kinetics, mineralization and reaction mechanism. Chem Eng J 125(1):59–66

    Article  CAS  Google Scholar 

  • Laoufi NA, Tassalit D, Bentahar F (2008) The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor. Global Nest J 10(3):404–418

    Google Scholar 

  • Lee J, Ji K, Kho YL, Kim P, Choi K (2011) Chronic exposure to diclofenac on two freshwater cladocerans and Japanese medaka. Ecotox Environ Safe 74(5):1216–1225

    Article  CAS  Google Scholar 

  • Leztel M, Meztner G, Leztel T (2009) Exposure assessment of the pharmaceutical diclofenac based on long-term measurements of the aquatic input. Environ Int 35(2):363–368

    Article  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected Results. Chem Rev 95(3):735–758

    Article  CAS  Google Scholar 

  • Martinez C, Canle LM, Fernandez MI, Santaballa JA, Faria J (2011) Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl Catal B Environ 107(1–2):110–118

    Article  CAS  Google Scholar 

  • Mendez-Arriaga F, Esplugas S, Gimenez J (2008) Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res 42(3):585–594

    Article  CAS  Google Scholar 

  • Minero C, Mariella G, Maurino V, Pelizzetti E (2000) Photocatalytic transformation of organic compounds in the presence of inorganic anions. 1. hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system. Langmuir 16(6):2632–2641

    Article  CAS  Google Scholar 

  • Naidoo V, Wolter K, Cuthbert R, Duncan N (2009) Veterinary diclofenac threatens Africa’s endangered vulture species. Regul Toxicol Pharm 53(3):205–208

    Article  CAS  Google Scholar 

  • Parra S, Olivero J, Pulgarin C (2002) Relationships between physicochemical properties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueous TiO2 suspension. Appl Catal B Environ 36(1):75–85

    Article  CAS  Google Scholar 

  • Qamar M, Muneer M (2009) A comparative photocatalytic activity of titanium dioxide and zinc oxide by investigating the degradation of vanillin. Desalination 249(2):535–540

    Article  CAS  Google Scholar 

  • Qiu S, Starr TL (2007) Zirconium doping in titanium oxide photocatalytic films prepared by atomic layer deposition. J Electrochem Soc 154(6):472–475

    Article  Google Scholar 

  • Qourzal S, Barka N, Tamimi M, Assabbane A, Ait-Ichou Y (2008) Photodegradation of 2-naphthol in water by artificial light illumination using TiO2 photocatalyst: identification of intermediates and the reaction pathway. Appl Catal A Gen 334(1–2):386–393

    Article  CAS  Google Scholar 

  • Rizzo L, Meric S, Kassinos D, Guida M, Russo F, Belgiorno V (2009) Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res 43(4):979–988

    Article  CAS  Google Scholar 

  • Schiller R, Weiss CK, Landfester K (2010) Phase stability and photocatalytic activity of Zr-doped anatase synthesized in miniemulsion. Nanotechnology 21(40):405–419

    Article  Google Scholar 

  • Schmidt W, Rourke KO, Hernan R, Quinn B (2011) Effects of the pharmaceuticals gemfibrozil and diclofenac on the marine mussel (Mytilus spp.) and their comparison with standardized toxicity tests. Mar Pollut Bull 62(7):1389–1395

    Article  CAS  Google Scholar 

  • Shi-fu C, Geng-yu C (2003) TiO2/beads as a photocatalyst for the degradation of X3B azo dye. J Environ Sci 15(1):83–87

    Google Scholar 

  • Shi-fu C, Xue-li C (1998) Photocatalytic degradation of organocholine compounds using TiO2 supported on fiberglass cloth. J Environ Sci 10(4):433–436

    Google Scholar 

  • Shulzt S, Baral HS, Charman S, Cunningham AA, Das D, Ghalsasi GR, Goudar MS, Green RE, Jones A, Nighot P, Pain DJ, Prakash V (2004) Diclofenac poisoning is widespread in declining vulture populations across the Indian subcontinent. Proc R Soc Lond B (Suppl) 271(6):458–460

    Google Scholar 

  • Stasinakis AS (2008) Use of selected advanced oxidation processes (AOPs) for wastewater treatment—a mini review. Global Nest J 10(3):376–385

    Google Scholar 

  • Stumpf M, Ternesa TA, Wilkena R, Rodrigues SV, Baumann W (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Sci Total Environ 225(1–2):135–141

    Article  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32(11):3245–3260

    Article  CAS  Google Scholar 

  • Tian-hua X, Chen-lu S, Yong L, Gao-rong H (2004) Band structures of TiO2 doped with N, C and B. J Zhejiang Univ Sci B 7(4):299–303

    Google Scholar 

  • Venkatachalam N, Palanichamy M, Arabindoo B, Murugesan V (2007) Enhanced photocatalytic degradation of 4-chlorophenol by Zr4+ doped nano TiO2. J Mol Catal A Chem 266(1–2):158–165

    Article  CAS  Google Scholar 

  • Vishwanathan V, Roh H, Kim J, Jun K (2004) Surface properties and catalytic activity of TiO2–ZrO2 mixed oxides in dehydration of methanol to dimethyl ether. Catal Lett 96(1–2):23–28

    Article  CAS  Google Scholar 

  • Wang K, Hsieh Y, Wu C, Chang C (2000) The pH and anion effects on the heterogeneous photocatalytic degradation of o-methylbenzoic acid in TiO2 aqueous suspension. Chemosphere 40(4):389–394

    Article  CAS  Google Scholar 

  • Wang Y, Liu S, Lu M, Wang S, Gu F, Gai XZ, Cui XP, Pan J (2004) Preparation and photocatalytic properties of Zr4+-doped TiO2 nanocrystals. J Mol Catal A Chem 215(1–2):137–142

    Article  CAS  Google Scholar 

  • Wv J, Chung C, Ay C, Wang I (1984) Non-oxidative dehydrogenation of ethylbenzene over TiO2-ZrO2 catalysts. J Catal 87(1):98–107

    Article  Google Scholar 

  • Zaleska A (2008) Doped-TiO2: a Review. Recent pat Eng 2(3):157–164

    Article  CAS  Google Scholar 

  • Zhang D, Zeng F (2010) Structural, photochemical and photocatalytic properties of zirconium oxide doped TiO2 nanocrystallites. Appl Surf Sci 257(3):867–871

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Indian Institute of Technology Kharagpur, India, for providing infrastructure and resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Basu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, L., Barodia, S.K., Sengupta, S. et al. Aqueous degradation kinetics of pharmaceutical drug diclofenac by photocatalysis using nanostructured titania–zirconia composite catalyst. Int. J. Environ. Sci. Technol. 12, 317–326 (2015). https://doi.org/10.1007/s13762-013-0466-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0466-y

Keywords

Navigation