Skip to main content
Log in

Improving the Fenton process by visible LED irradiation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The effect of irradiation with visible light-emitting diode (LED) light on the efficiency of Fenton oxidation is investigated using phenol as the target compound (100 mg/L). The H2O2 dose and temperature are tested as operating variables with the aim of minimizing consumption of the reagents. At 50 °C, 10 mg/L Fe2+, and 60 % of the stoichiometric H2O2 amount, phenol was completely oxidized into CO2, H2O, and short chain organic acids, with oxalic acid completely degraded. Up to 95 % mineralization was achieved. This high efficiency can be attributed to the effect of LED radiation on the quinones/Fe2+/Fe3+/H2O2 cycle, which significantly increases the reaction rate, as well as on the photodecomposition of the iron complexes formed along the oxidation process, which also enhanced mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Balmer ME, Sulzberger B (1999) Atrazine degradation in irradiated iron/oxalate systems: effects of pH and oxalate. Environ Sci Technol 33:2418–2424

    Article  CAS  Google Scholar 

  • Bautista P, Mohedano AF, Casas JA, Zazo JA, Rodriguez JJ (2008) An overview of the application of Fenton oxidation to industrial wastewaters treatment. J Chem Technol Biotechnol 83:1323–1338

    Article  CAS  Google Scholar 

  • Benkelberg HJ, Warneck P (1995) Photodecomposition of iron(iii) hydroxo and sulfato complexes in aqueous-solution—wavelength dependence of oh and So4-quantum yields. J Phys Chem 99:5214–5221

    Article  CAS  Google Scholar 

  • Chacón JM, Teresa Leal M, Sánchez M, Bandala ER (2006) Solar photocatalytic degradation of azo-dyes by photo-Fenton process. Dyes Pigments 69:144–150

    Article  Google Scholar 

  • Chen R, Pignatello JJ (1997) Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidation of aromatic compounds. Environ Sci Technol 31:2399–2406

    Article  CAS  Google Scholar 

  • Eisenberg GM (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem , Anal Ed 15:327–328

    Article  CAS  Google Scholar 

  • García-Montaño J, Pérez-Estrada L, Oller I, Maldonado MI, Torrades F, Peral J (2008) Pilot plant scale reactive dyes degradation by solar photo-Fenton and biological processes. J Photochem Photobiol A 195:205–214

    Article  Google Scholar 

  • Jo W, Tayade RJ (2014) New generation energy-efficient light source for photocatalysis: LEDs for environmental applications. Ind Eng Chem Res 53:2073–2084

    Article  CAS  Google Scholar 

  • Kavitha V, Palanivelu K (2004) The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere 55:1235–1243

    Article  CAS  Google Scholar 

  • Li Y, Jiang Y, Peng S, Jiang F (2010) Nitrogen-doped TiO2 modified with NH4F for efficient photocatalytic degradation of formaldehyde under blue light-emitting diodes. J Hazard Mater 182:90–96

    Article  CAS  Google Scholar 

  • Liu Y, Liu J, Lin Y, Zhang Y, Wei Y (2009) Simple fabrication and photocatalytic activity of S-doped TiO2 under low power LED visible light irradiation. Ceram Int 35:3061–3065

    Article  CAS  Google Scholar 

  • Mijangos F, Varona F, Villota N (2006) Changes in solution color during phenol oxidation by Fenton reagent. Environ Sci Technol 40:5538–5543

    Article  CAS  Google Scholar 

  • Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2011) Assessment of generation of chlorinated byproducts upon Fenton-like oxidation of chlorophenols at different conditions. J Hazard Mater 190:993–1000

    Article  CAS  Google Scholar 

  • Ononye AI, McIntosh AR, Bolton JR (1986) Mechanism of the photochemistry of p-benzoquinone in aqueous solutions. 1. Spin trapping and flash photolysis electron paramagnetic resonance studies. J Phys Chem 90:6266–6270

    Article  CAS  Google Scholar 

  • Pignatello JJ (1992) Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ Sci Technol 26:944–951

    Article  CAS  Google Scholar 

  • Pliego G, Zazo JA, Pariente MI, Rodríguez I, Petre AL, Leton P, García J (2014a) Treatment of a wastewater from a pesticide manufacture by combined coagulation and Fenton oxidation. Environ Sci Pollut Res 21:12129–12134

    Article  CAS  Google Scholar 

  • Pliego G, Zazo JA, Casas JA, Rodriguez JJ (2014b) Fate of iron oxalates in aqueous solution: the role of temperature, iron species and dissolved oxygen. J Environ Chem Eng 2:2236–2241

    Article  CAS  Google Scholar 

  • Poerschmann J, Trommler U (2009) Pathways of advanced oxidation of phenol by Fenton’s reagent—identification of oxidative coupling intermediates by extractive acetylation. J Chromatogr A 1216:5570–5579

    Article  CAS  Google Scholar 

  • Pozdnyakov IP, Kel OV, Plyusnin VF, Grivin VP, Bazhin NM (2008) New insight into photochemistry of Ferrioxalate. J Phys Chem A 112:8316–8322

    Article  CAS  Google Scholar 

  • Sagawe G, Lehnard A, Lübber M, Bahnemann D (2001) The insulated solar Fenton hybrid process: fundamental investigations. Helv Chim Acta 84:3742–3759

    Article  CAS  Google Scholar 

  • Tokumura M, Znad HT, Kawase Y (2008) Decolorization of dark brown colored coffee effluent by solar photo-Fenton reaction: effect of solar light dose on decolorization kinetics. Water Res 42:4665–4673

    Article  CAS  Google Scholar 

  • von Sonntag C (2008) Advanced oxidation processes: mechanistic aspects. Water Sci Technol 58:1015–1021

    Article  Google Scholar 

  • Wang X, Lim T (2010) Solvothermal synthesis of C–N codoped TiO2 and photocatalytic evaluation for bisphenol a degradation using a visible-light irradiated LED photoreactor. Appl Catal B Environ 100:355–364

    Article  CAS  Google Scholar 

  • Wang P, Lim T (2012) Membrane vis-LED photoreactor for simultaneous penicillin G degradation and TiO2 separation. Water Res 46:1825–1837

    Article  CAS  Google Scholar 

  • Yin S, Liu B, Zhang P, Morikawa T, Yamanaka K, Sato T (2008) Photocatalytic oxidation of NOx under visible LED light irradiation over nitrogen-doped Titania particles with iron or platinum loading. J Phys Chem C 112:12425–12431

    Article  CAS  Google Scholar 

  • Zazo JA, Casas JA, Mohedano AF, Gilarranz MA, Rodriguez JJ (2005) Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ Sci Technol 39:9295–9302

    Article  CAS  Google Scholar 

  • Zazo JA, Casas JA, Molina CB, Quintanilla A, Rodriguez JJ (2007) Evolution of ecotoxicity upon Fenton’s oxidation of phenol in water. Environ Sci Technol 41:7164–7170

    Article  CAS  Google Scholar 

  • Zazo JA, Pliego G, Blasco S, Casas JA, Rodriguez JJ (2011) Intensification of the Fenton process by increasing the temperature. Ind Eng Chem Res 50:866–870

    Article  CAS  Google Scholar 

  • Zuo YG, Hoigne J (1992) Formation of hydrogen-peroxide and depletion of oxalic-acid in atmospheric water by photolysis of iron(iii) Oxalato complexes. Environ Sci Technol 26:1014–1022

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Spanish MICINN through the projects CTQ2013-41963-R and by the CM through the project S2013/MAE-2716. The authors also want to thank Dr. Harding for his collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gema Pliego.

Additional information

Responsible editor: Vítor Pais Vilar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pliego, G., Garcia-Muñoz, P., Zazo, J.A. et al. Improving the Fenton process by visible LED irradiation. Environ Sci Pollut Res 23, 23449–23455 (2016). https://doi.org/10.1007/s11356-016-7543-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7543-y

Keywords

Navigation