Skip to main content

The Photo-Fenton System

  • Chapter
  • First Online:
Springer Handbook of Inorganic Photochemistry

Abstract

The photo-Fenton system is an advanced oxidation technology for the oxidative degradation of recalcitrant organic contaminants in water, which is based on the photochemistry of iron complexes and the Fenton reaction. The efficiency of the photo-Fenton system in degrading water contaminants is mainly determined by the kinetics of the photochemical reactions of Fe(III) complexes. Under UV and visible light illumination, Fe(III) complexes undergo photochemical reduction to yield Fe(II) and a radical via ligand-to-metal charge transfer. The produced Fe(II) is used to generate reactive oxidants (mainly hydroxyl radical) responsible for the degradation of contaminants by reaction with hydrogen peroxide (i.e., the Fenton reaction). Fe(III) complexes exhibit different photochemical properties regarding light absorption and quantum yield, and their speciation is affected by different factors such as pH, temperature, and types of ligands. As a result, such factors affect the degradation of water contaminants by the photo-Fenton system. There have been numerous studies regarding application of the photo-Fenton system to water treatment. However, the practical use of the photo-Fenton system in the field is still limited due to several drawbacks. To improve the applicability of the photo-Fenton system, more progress must be made in both the fundamental and technical aspects of its use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B..: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J. Phys. Chem. Ref. Data. 17(2), 513–886 (1988)

    Article  CAS  Google Scholar 

  2. Cho, M., Kim, H., Cho, S.H., Yoon, J.: Investigation of ozone reaction in river waters causing instantaneous ozone demand. Ozone Sci. Eng. 25(4), 251–259 (2003)

    Article  CAS  Google Scholar 

  3. Solozhenko, E.G., Soboleva, N.M., Goncharuk, V.V.: Decolourization of azo dye solutions by Fenton’s oxidation. Water Res. 29(9), 2206–2210 (1995)

    Article  CAS  Google Scholar 

  4. Choi, W.: Studies on TiO2 photocatalytic reactions. J. Korean Ind. Eng. Chem. 14(8), 1011–1022 (2003)

    CAS  Google Scholar 

  5. Lee, Y., Lee, C., Yoon, J.: Kinetics and mechanisms of DMSO(dimethyl sulfoxide) degradation by UV/H2O2 process. Water Res. 38(10), 2579–2588 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. Pignatello, J.J., Oliveros, E., MacKay, A.: Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Crit. Rev. Environ. Sci. Technol. 36(1), 1–84 (2006)

    Article  CAS  Google Scholar 

  7. Anotai, J., Lu, M.-C., Chewpreecha, P.: Kinetics of aniline degradation by Fenton and electro-Fenton processes. Water Res. 40(9), 1841–1847 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. Klamerth, N., Malato, S., Aguera, A., Fernadez-Alba, A.: Photo-Fenton and modified photo-Fenton at neutral pH for the treatment of emerging contaminants in wastewater treatment plant effluents: a comparison. Water Res. 47(2), 833–840 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. Hardwick, T.J.: The rate constant of the reaction between ferrous ions and hydrogen peroxide in acid solution. Can. J. Chem. 35(5), 428–436 (1957)

    Article  CAS  Google Scholar 

  10. Pang, S.-Y., Jiang, J., Ma, J.: Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in Fenton reaction. Environ. Sci. Technol. 45(1), 307–312 (2011)

    Article  CAS  PubMed  Google Scholar 

  11. Lee, H., Lee, H.-J., Kim, H.-E., Kweon, J., Lee, B.-D., Lee, C.: Oxidant production from corrosion of nano- and microparticulate zero-valent iron in the presence of oxygen: a comparative study. J. Hazard. Mater. 265, 201–207 (2014)

    Article  CAS  PubMed  Google Scholar 

  12. Lee, C., Sedlak, D.L.: Enhanced formation of oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen. Environ. Sci. Technol. 42(22), 8528–8533 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, H., Lee, H.-J., Sedlak, D.L., Lee, C.: pH-dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide. Chemosphere. 92(6), 652–658 (2013)

    Article  CAS  PubMed  Google Scholar 

  14. Walling, C., Goosen, A.: Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. J. Am. Chem. Soc. 95(9), 2987–2991 (1973)

    Article  CAS  Google Scholar 

  15. De Laat, J., Gallard, H.: Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ. Sci. Technol. 33(16), 2726–2732 (1999)

    Article  CAS  Google Scholar 

  16. Rothschild, W.G., Allen, A.O.: Studies in the radiolysis of ferrous sulfate solutions. Radiat. Res. 8(2), 101–110 (1958)

    Article  CAS  PubMed  Google Scholar 

  17. Jayson, G.G., Parsons, B.J., Swallow, A.J.: Oxidation of ferrous ions by perhydroxyl radicals. J. Chem. Soc. Faraday Trans. 1. 69, 236–242 (1973)

    Article  CAS  Google Scholar 

  18. Rush, J.D., Bielski, B.H.J.: Pulse radiolytic studies of the reactions of HO2/O2 with Fe(II)/Fe(III) ions. The reactivity of HO2/O2 with ferric ions and its implication on the occurrence of the Haber-Weiss reaction. J. Phys. Chem. 89(23), 5062–5066 (1985)

    Article  CAS  Google Scholar 

  19. Lee, Y., Lee, C., Yoon, J.: High temperature dependence of 2,4-dichloro-phenoxyacetic acid degradation by Fe3+/H2O2 system. Chemosphere. 51(9), 963–971 (2003)

    Article  CAS  PubMed  Google Scholar 

  20. Chen, R., Pignatello, J.J.: Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environ. Sci. Technol. 31(8), 2399–2406 (1997)

    Article  CAS  Google Scholar 

  21. Gallard, H., De Laat, J.: Kinetics of oxidation of chlorobenzenes and phenyl-ureas by Fe(II)/H2O2 and Fe(III)/H2O2. Evidence of reduction and oxidation reactions of intermediates by Fe(II) or Fe(III). Chemosphere. 42(4), 405–413 (2001)

    Article  CAS  PubMed  Google Scholar 

  22. Lahkimi, A., Oturan, M.A., Oturan, N., Chaouch, M.: Removal of textile dyes from water by the electro-Fenton process. Environ. Chem. Lett. 5(1), 35–39 (2007)

    Article  CAS  Google Scholar 

  23. Mohajeri, S., Aziz, H.A., Isa, M.H., Zahed, M.A., Adlan, M.N.: Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique. J. Hazard. Mater. 176(1–3), 749–758 (2010)

    Article  CAS  PubMed  Google Scholar 

  24. Lunar, L., Sicilia, D., Rubio, S., Perez-Bendito, D., Nickel, U.: Degradation of photographic developers by Fenton’s reagent: condition optimization and kinetics for metol oxidation. Water Res. 34(6), 1791–1802 (2000)

    Article  CAS  Google Scholar 

  25. Zepp, R.G., Faust, B.C., Hoigne, J.: Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction. Environ. Sci. Technol. 26(2), 313–319 (1992)

    Article  CAS  Google Scholar 

  26. Kavitha, V., Palanivelu, K.: The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere. 55(9), 1235–1243 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. Milburn, R.M., Vosburgh, W.C.: A spectrophotometric study of the hydrolysis of iron(III) ion. II. Polynuclear species. J. Am. Chem. Soc. 77(5), 1352–1355 (1955)

    Article  CAS  Google Scholar 

  28. Knight, R.J., Sylva, R.N.: Spectrophotometric investigation of iron(III) hydrolysis in light and heavy water at 25°C. J. Inorg. Nucl. Chem. 37(3), 779–783 (1975)

    Article  CAS  Google Scholar 

  29. Faust, B.C., Hoigné, J.: Photolysis of Fe(III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain. Atmos. Environ. 24(1), 79–89 (1990)

    Article  Google Scholar 

  30. Stumm, W., Morgan, J.J.: Aquatic Chemistry, 3rd edn. Wiley-Interscience, New York (1996)

    Google Scholar 

  31. Lee, C., Yoon, J.: Determination of quantum yield for the photolysis of Fe(III)-hydroxo complexes in aqueous solution using a novel kinetic method. Chemosphere. 57(10), 1449–1458 (2004)

    Article  CAS  PubMed  Google Scholar 

  32. Eberson, L., Nyberg, K.: Radical ion reactivity. II. A theoretical study of radical cation reactivity vs. nucleophiles, based on thermochemical calculations. Acta Chem. Scand. Ser. B. 32, 235–248 (1978)

    Article  Google Scholar 

  33. Eberson, L.: Electron-transfer reactions in organic chemistry. Adv. Phys. Org. Chem. 18, 79–185 (1982)

    CAS  Google Scholar 

  34. Huie, R.E., Clifton, C.L., Neta, P.: Electron transfer reaction rates and equilibria of the carbonate and sulfate radical anions. J. Radiat. Appl. Instrum. Part C. Radiat. Phys. Chem. 38(5), 477–481 (1991)

    CAS  Google Scholar 

  35. Schwarz, H.A., Dodson, R.W.: Equilibrium between hydroxyl radicals and thallium(II) and the oxidation potential of OH(aq). J. Phys. Chem. 88(16), 3643–3647 (1984)

    Article  CAS  Google Scholar 

  36. Pérez, M., Torrades, F., Domènech, X., Peral, J.: Fenton and photo-Fenton oxidation of textile effluents. Water Res. 36(11), 2703–2710 (2002)

    Article  PubMed  Google Scholar 

  37. Lee, C., Yoon, J.: Temperature dependence of hydroxyl radical formation in the /Fe3+/H2O2 and Fe3+/H2O2 systems. Chemosphere. 56(10), 923–934 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. Cavert, J.G., Pitts, J.N.: Photochemistry. Wiley, New York (1967)

    Google Scholar 

  39. Nadtochenko, V.A., Kiwi, J.: Photolysis of FeOH2+ and FeCl2+ in aqueous solution. Photodissociation kinetics and quantum yields. Inorg. Chem. 37(20), 5233–5238 (1998)

    Article  CAS  Google Scholar 

  40. Langford, C.H., Carey, J.H.: The charge transfer photochemistry of the hexaaquiron(III) ion, the chloropentaaquoiron(III) ion, and the l-dihydroxo dimer explored with tert-butyl alcohol scavenging. Can. J. Chem. 53(16), 2430–2435 (1975)

    Article  CAS  Google Scholar 

  41. Benkelberg, H.-J., Warneck, P.: Photodecomposition of iron(III) hydroxo and sulfato complexes in aqueous solution: wavelength dependence of OH and SO4 quantum yields. J. Phys. Chem. 99(14), 5214–5221 (1995)

    Article  CAS  Google Scholar 

  42. Hatchard, C.G., Packer, C.A.: A new sensitive chemical actinometer - II. Potassium ferrioxalate as a standard chemical actinometer. Proc. R. Soc. A-Math. Phys. Eng. Sci. 235(1203), 518–536 (1956)

    CAS  Google Scholar 

  43. Quici, N., Morgada, M.E., Gettar, R.T., Bolte, M., Litter, M.I.: Photocatalytic degradation of citric acid under different conditions: TiO2 heterogeneous photocatalysis against homogeneous photolytic processes promoted by Fe(III) and H2O2. Appl. Catal. B-Environ. 71(3–4), 117–124 (2007)

    Article  CAS  Google Scholar 

  44. Faust, B.C., Zepp, R.G.: Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environ. Sci. Technol. 27(12), 2517–2522 (1993)

    Article  CAS  Google Scholar 

  45. Zuo, Y., Hoigné, J.: Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes. Environ. Sci. Technol. 26(5), 1014–1022 (1992)

    Article  CAS  Google Scholar 

  46. Schwarz, H.A., Dodson, R.W.: Reduction potentials of CO2 and the alcohol radicals. J. Phys. Chem. 93(1), 409–414 (1989)

    Article  CAS  Google Scholar 

  47. Mulazzani, Q.G., D’Angelantonio, M., Venturi, M., Hoffmann, M.Z., Rodgers, M.A.J.: Interaction of formate and oxalate ions with radiation-generated radicals in aqueous solution. Methyviologen as a mechanistic probe. J. Phys. Chem. 90(21), 5347–5352 (1986)., in~

    Article  CAS  Google Scholar 

  48. Hislop, K.A., Bolton, J.R.: The photochemical generation of hydroxyl radicals in the UV-vis/ferrioxalate/H2O2 system. Environ. Sci. Technol. 33(18), 3119–3126 (1999)

    Article  CAS  Google Scholar 

  49. Jeong, J., Yoon, J.: Dual roles of CO2•− for degrading synthetic organic chemicals in the photo/ferrioxalate system. Water Res. 38(16), 3531–3540 (2004)

    Article  CAS  PubMed  Google Scholar 

  50. Sedlak, D.L., Hoigné, J.: The role of copper and oxalate in the redox cycling of iron in atmospheric waters. Atmos. Environ. 27A(14), 2173–2185 (1993)

    Article  CAS  Google Scholar 

  51. Keenan, C.R., Sedlak, D.L.: Ligand-enhanced reactive oxidant generation by nanoparticulate zero-valent iron and oxygen. Environ. Sci. Technol. 42(18), 6936–6941 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim, H.-H., Lee, H., Kim, H.-E., Seo, J., Hong, S.W., Lee, J.-Y., Lee, C.: Polyphosphate-enhanced production of reactive oxidants by nanoparticulate zero-valent iron and ferrous ion in the presence of oxygen: yield and nature of oxidants. Water Res. 86, 66–73 (2015)

    Article  CAS  PubMed  Google Scholar 

  53. King, D.W., Lounsbury, H.A., Millero, F.J.: Rates and mechanism of Fe(II) oxidation at nanomolar total iron concentrations. Environ. Sci. Technol. 29(3), 818–824 (1995)

    Article  CAS  PubMed  Google Scholar 

  54. Huston, P.L., Pignatello, J.J.: Reduction of perchloroalkanes by ferrioxalate-generated carboxylate radical preceding mineralization by the photo-Fenton reaction. Environ. Sci. Technol. 30(12), 3457–3463 (1996)

    Article  CAS  Google Scholar 

  55. Ravikumar, J.X., Gurol, M.D.: Chemical oxidation of chlorinated organics by hydrogen peroxide in the presence of sand. Environ. Sci. Technol. 28(3), 394–400 (1994)

    Article  CAS  PubMed  Google Scholar 

  56. Miller, C.M., Valentine, R.L.: Hydrogen peroxide decomposition and quinoline degradation in the presence of aquifer material. Water Res. 29(10), 2353–2359 (1995)

    Article  CAS  Google Scholar 

  57. Miller, C.M., Valentine, R.L.: Mechanistic studies of surface catalyzed H2O2 decomposition and contaminant degradation in the presence of sand. Water Res. 33(12), 2805–2816 (1999)

    Article  CAS  Google Scholar 

  58. Huang, H.H., Lu, M.C., Chen, J.N.: Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides. Water Res. 35(9), 2291–2299 (2001)

    Article  CAS  PubMed  Google Scholar 

  59. Lin, S.-S., Gurol, M.D.: Catalytic decomposition of hydrogen peroxide on iron oxide: kinetics, mechanism, and implications. Environ. Sci. Technol. 32(10), 1417–1423 (1998)

    Article  CAS  Google Scholar 

  60. Kwan, W.P., Voelker, B.M.: Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environ. Sci. Technol. 36(7), 1467–1476 (2002)

    Article  CAS  PubMed  Google Scholar 

  61. Petigara, B.R., Blough, N.V., Mignerey, A.C.: Mechanisms of hydrogen peroxide decomposition in soils. Environ. Sci. Technol. 36(4), 639–645 (2002)

    Article  CAS  PubMed  Google Scholar 

  62. Matta, R., Hanna, K., Chiron, S.: Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Sci. Total Environ. 385(1–3), 242–251 (2007)

    Article  CAS  PubMed  Google Scholar 

  63. Huling, S.G., Arnold, R.G., Sierka, R.A., Miller, M.R.: Measurement of hydroxyl radical activity in a soil slurry using the spin trap α-(4-pyridyl-1-oxide)- N-tert-butylnitrone. Environ. Sci. Technol. 32(21), 3436–3441 (1998)

    Article  CAS  Google Scholar 

  64. Pham, A.L.-T., Lee, C., Doyle, F.M., Sedlak, D.L.: A silica-supported iron oxide catalyst capable of activating hydrogen peroxide at neutral pH values. Environ. Sci. Technol. 43(23), 8930–8935 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pham, A.L.-T., Doyle, F.M., Sedlak, D.L.: Kinetics and efficiency of H2O2 activation by iron-containing minerals and aquifer materials. Water Res. 46(19), 6454–6462 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lim, H., Lee, J., Jin, S., Kim, J., Yoon, J., Hyeon, T.: Highly active heterogeneous Fenton catalyst using iron oxide nanoparticles immobilized in alumina coated mesoporous silica. Chem. Commun. 42(4), 463–465 (2006)

    Article  Google Scholar 

  67. Luo, M., Bowden, D., Brimblecombe, P.: Catalytic property of Fe-Al pillared clay for Fenton oxidation of phenol by H2O2. Appl. Catal. B-Environ. 85(3–4), 201–206 (2009)

    Article  CAS  Google Scholar 

  68. Chou, S., Huang, C.: Application of a supported iron oxyhydroxide catalyst in oxidation of benzoic acid by hydrogen peroxide. Chemosphere. 38(12), 2719–2731 (1999)

    Article  CAS  Google Scholar 

  69. Garrido-Ramírez, E.G., Theng, B.K.G., Mora, M.L.: Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions-a review. Appl. Clay Sci. 47(3–4), 182–192 (2010)

    Article  CAS  Google Scholar 

  70. Sulzberger, B., Laubscher, H.: Reactivity of various types of iron(III) (hydr)oxides towards light-induced dissolution. Mar. Chem. 50(1–4), 103–115 (1995)

    Article  CAS  Google Scholar 

  71. Voelker, B.M., Morel, F.M.M., Sulzberger, B.: Iron redox cycling in surface waters: effects of humic substances and light. Environ. Sci. Technol. 31(4), 1004–1011 (1997)

    Article  CAS  Google Scholar 

  72. Chan, J.Y.T., Ang, S.Y., Ye, E.Y., Sullivan, M., Zhang, J., Lin, M.: Heterogeneous photo-Fenton reaction on hematite (α-Fe2O3){104},{113} and {001} surface facets. Phys. Chem. Chem. Phys. 17(38), 25333–25341 (2015)

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, Y., Zhang, N., Wang, T., Huang, H., Chen, Y., Li, Z., Zou, Z.: Heterogeneous degradation of organic contaminants in the photo-Fenton reaction employing pure cubic β-Fe2O3. Appl. Catal. B-Environ. 245, 410–419 (2019)

    Article  CAS  Google Scholar 

  74. Mechakra, H., Sehili, T., Kribeche, M.A., Ayachi, A.A., Rossignol, S., George, C.: Use of natural iron oxide as heterogeneous catalyst in photo-Fenton-like oxidation of chlorophenylurea herbicide in aqueous solution: reaction monitoring and degradation pathways. J. Photochem. Photobiol. A-Chem. 317, 140–150 (2016)

    Article  CAS  Google Scholar 

  75. Zhu, Y., Zhu, R., Yan, L., Fu, H., Xi, Y., Zhou, H., Zhu, G., Zhu, J., He, H.: Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite. Appl. Catal. B-Environ. 239, 280–289 (2018)

    Article  CAS  Google Scholar 

  76. Liu, Y., Jin, W., Zhao, Y., Zhang, G., Zhang, W.: Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl. Catal. B-Environ. 206, 642–652 (2017)

    Article  CAS  Google Scholar 

  77. Gao, Y., Wang, Y., Zhang, H.: Removal of Rhodamine B with Fe-supported bentonite as heterogeneous photo-Fenton catalyst under visible irradiation. Appl. Catal. B-Environ. 178, 29–36 (2015)

    Article  CAS  Google Scholar 

  78. Ji, F., Li, C., Zhang, J., Deng, L.: Heterogeneous photo-Fenton decolorization of methylene blue over LiFe(WO4)2 catalyst. J. Hazard. Mater. 186(2–3), 1979–1984 (2011)

    Article  CAS  PubMed  Google Scholar 

  79. Al-Kahtani, A.A., Taleb, M.F.A.: Photocatalytic degradation of Maxilon C.I. basic dye using CS/CoFe2O4/GONCs as a heterogeneous photo-Fenton catalyst prepared by gamma irradiation. J. Hazard. Mater. 309, 10–19 (2016)

    Article  CAS  PubMed  Google Scholar 

  80. Chen, Q., Wu, P., Li, Y., Zhu, N., Dang, Z.: Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation. J. Hazard. Mater. 168(2–3), 901–908 (2009)

    Article  CAS  PubMed  Google Scholar 

  81. Qian, X., Ren, M., Zhu, Y., Yue, D., Han, Y., Jia, J., Zhao, Y.: Visible light assisted heterogeneous Fenton-like degradation of organic pollutant via α-FeOOH/mesoporous carbon composites. Environ. Sci. Technol. 51(7), 3993–4000 (2017)

    Article  CAS  PubMed  Google Scholar 

  82. Herney-Ramirez, J., Vicente, M.A., Madeira, L.M.: Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review. Appl. Catal. B-Environ. 98(1–2), 10–26 (2010)

    Article  CAS  Google Scholar 

  83. Kim, S.-M., Vogelpohl, A.: Degradation of organic pollutants by the photo-Fenton process. Chem. Eng. Technol. 21(2), 187–191 (1998)

    Article  CAS  Google Scholar 

  84. Klamerth, N., Malato, S., Maldonado, M.I., Agüera, A., Fernández-Alba, A.R.: Application of photo-Fenton as a tertiary treatment of emerging contaminants in municipal wastewater. Environ. Sci. Technol. 44(5), 1792–1798 (2010)

    Article  CAS  PubMed  Google Scholar 

  85. Trovó, A.G., Melo, S.A.S., Nogueira, R.F.P.: Photodegradation of the pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton process - application to sewage treatment plant effluent. J. Photochem. Photobio. A-Chem. 198(2–3), 215–220 (2008)

    Article  CAS  Google Scholar 

  86. Bauer, R., Fallmann, H.: The photo-Fenton oxidation - a cheap and efficient wastewater treatment method. Res. Chem. Intermed. 23(4), 341–354 (1997)

    Article  CAS  Google Scholar 

  87. García-Monatano, J., Pérez-Estrada, L., Oller, I., Maldonado, M.I., Torrades, F., Peral, J.: Pilot plant scale reactive dyes degradation by solar photo-Fenton and biological processes. J. Photochem. Photobio. A-Chem. 195(2–3), 205–214 (2008)

    Article  CAS  Google Scholar 

  88. Flox, C., Ammar, S., Arias, C., Brillas, E., Vargas-Zavala, A.V., Abdelhedi, R.: Electro-Fenton and photoelectron-Fenton degradation of indigo carmine in acidic aqueous medium. Appl. Catal. B-Environ. 67(1–2), 93–104 (2006)

    Article  CAS  Google Scholar 

  89. Boye, B., Brillas, E., Buso, A., Farnia, G., Flox, C., Giomo, M., Sandonà, G.: Electrochemical removal of gallic acid from aqueous solutions. Electrochim. Acta. 52(1), 256–262 (2006)

    Article  CAS  Google Scholar 

  90. Huang, C.-P., Huang, Y.-H.: Application of an active immobilized iron oxide with catalytic H2O2 for the mineralization of phenol in a batch photo-fluidized bed reactor. Appl. Catal. A-Gen. 357(2), 135–141 (2009)

    Article  CAS  Google Scholar 

  91. Wang, Y., Priambodo, R., Zhang, H., Huang, Y.H.: Degradation of azo dye orange G in fluidized bed reactor using iron oxide as a heterogeneous photo-Fenton catalyst. RSC Adv. 5, 45276–45283 (2015)

    Article  CAS  Google Scholar 

  92. Malato, S., Caceres, J., Agüera, A., Mezcua, M., Hernando, D., Vial, J., Fernández-Alba, A.R.: Degradation of imidacloprid in water by photo-Fenton and TiO2 photocatalysis at a solar pilot plant: a comparative study. Enviorn. Sci. Technol. 35(21), 4359–4366 (2001)

    Article  CAS  Google Scholar 

  93. Pintor, A.M.A., Vilar, V.J.P., Boaventura, R.A.R.: Decontamination of cork wastewaters by solar-photo-Fenton process using cork bleaching wastewater as H2O2 source. Sol. Energy. 85(3), 579–587 (2011)

    Article  CAS  Google Scholar 

  94. Pérez-Estrada, L.A., Malato, S., Gernjak, W., Agüera, A., Thurman, E.M., Ferrer, I., Fernández-Alba, A.R.: Photo-Fenton degradation of diclofenac: identification of main intermediates and degradation pathway. Environ. Sci. Technol. 39(21), 8300–8306 (2005)

    Article  PubMed  CAS  Google Scholar 

  95. Amat, A.M., Arques, A., Miranda, M.A., Seguí, S.: Photo-Fenton reaction for the abatement of commercial surfactants in a solar pilot plant. Sol. Energy. 77(5), 559–566 (2004)

    Article  CAS  Google Scholar 

  96. Gernjak, W., Maldonado, M.I., Malato, S., Cáceres, J., Krutzler, T., Glaser, A., Bauer, R.: Pilot-plant treatment of olive mill wastewater (OMW) by solar TiO2 photocatalysis and solar photo-Fenton. Sol. Energy. 77(5), 567–572 (2004)

    Article  CAS  Google Scholar 

  97. De la Cruz, N., Esquius, L., Grandjean, D., Magnet, A., Tungler, A., de Alencastro, L.F., Pulgarín, C.: Degradation of emergent contaminants by UV, UV/H2O2 and neutral photo-Fenton at pilot scale in a domestic wastewater treatment plant. Water Res. 47(15), 5836–5845 (2013)

    Article  PubMed  CAS  Google Scholar 

  98. Monteagudo, J.M., Durán, A., San Martín, I., Aguirre, M.: Catalytic degradation of Orange II in a ferrioxalate-assisted photo-Fenton process using a combined UV-A/C-solar pilot-plant system. Appl. Catal. B-Environ. 95(1–2), 120–129 (2010)

    Article  CAS  Google Scholar 

  99. Oller, I., Malato, S., Sánchez-Pérez, J.A., Maldonado, M.I., Gernjak, W., Pérez-Estrada, L.A., Munoz, J.A., Ramos, C., Pulgarín, C.: Pre-industrial-scale combined solar photo-Fenton and immobilized biomass activated-sludge biotreatment. Ind. Eng. Chem. Res. 46(23), 7467–7475 (2007)

    Article  CAS  Google Scholar 

  100. Ubomba-Jaswa, E., Fernández-Ibáñez, P., Navntoft, C., Polo-López, M.I., McGuigan, K.G.: Investigating the microbial inactivation efficiency of a 25 L batch solar disinfection (SODIS) reactor enhanced with a compound parabolic collector (CPC) for household use. J. Chem. Technol. Biotechnol. 85(8), 1028–1037 (2010)

    Article  CAS  Google Scholar 

  101. Safarzadeh-Amiri, A., Bolton, J.R., Carter, S.R.: Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water. Water Res. 31(4), 787–798 (1997)

    Article  CAS  Google Scholar 

  102. Arslan, I., Balcioglu, I.A., Tuhkanen, T., Bahnemann, D.: H2O2/UV-C and Fe2+/H2O2/UV-C versus TiO2/UV-A treatment for reactive dye wastewater. J. Environ. Eng. 126(10), 903–911 (2000)

    Article  CAS  Google Scholar 

  103. Arslan, I., Balcioglu, I.A., Tuhkanen, T.: Treatability of simulated reactive dye-bath wastewater by photochemical and non-photochemical advanced oxidation processes. J. Environ. Sci. Health, Part A. 35(5), 775–793 (2000)

    Article  Google Scholar 

  104. Ahmed, B., Limem, E., Abdel-Wahab, A., Nasr, B.: Photo-Fenton treatment of actual agro-industrial wastewaters. Ind. Eng. Chem. Res. 50(11), 6673–6680 (2011)

    Article  CAS  Google Scholar 

  105. Chitra, S., Paramasivan, K., Sinha, P.K.: Photodegradation of EDTA using Fenton’s reagent: a pilot-scale study. Res. Chem. Intermed. 37(8), 961–974 (2011)

    Article  CAS  Google Scholar 

  106. Karci, A., Arslan-Alaton, I., Bekbolet, M., Ozhan, G., Alpertunga, B.: H2O2/UV-C and photo-Fenton treatment of a nonylphenol polyethoxylated in synthetic freshwater: follow-up of degradation products, acute toxicity and genotoxicity. Chem. Eng. J. 241, 43–51 (2014)

    Article  CAS  Google Scholar 

  107. Yáñez, E., Santander, P., Contreras, D., Yáñez, J., Cornejo, L., Mansilla, H.D.: Homogeneous and heterogeneous degradation of caffeic acid using photocatalysis driven UVA and solar light. J. Environ. Sci. Health, Part A. 51(1), 78–85 (2016)

    Article  CAS  Google Scholar 

  108. Shahwar, D.-E., Yasar, A., Yousaf, S.: Solar assisted photo Fenton for cost effective degradation of textile effluents in comparison to AOPs. Glob. Nest. J. 14(4), 477–486 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changha Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, C., Seo, J., Pham, A.LT. (2022). The Photo-Fenton System. In: Bahnemann, D., Patrocinio, A.O.T. (eds) Springer Handbook of Inorganic Photochemistry. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-63713-2_59

Download citation

Publish with us

Policies and ethics