Skip to main content
Log in

Preparation of transition metal composite graphite felt cathode for efficient heterogeneous electro-Fenton process

  • Advances and trends in Advanced Oxidation processes
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A composite graphite felt (GF) modified with transition metal was fabricated and used as cathode in heterogeneous electro-Fenton (EF) for methyl orange (MO) degradation. Characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), the morphology and surface physicochemical properties of the cathodes after modification were observed considerably changed. After loading metals, the current response became higher, the accumulation of H2O2 and the degradation efficiency of MO were improved. Under the same conditions, GF-Co had the highest catalytic activity for electro-reduction of O2 to H2O2 and MO degradation. At pH 3, 99 % of MO degradation efficiency was obtained using GF-Co after 120 min treatment and even at initial pH 9, 82 % of that was obtained. TOC removal efficiency reached 93.8 % using GF-Co at pH 3 after 120 min treatment while that was 12.3 % using GF. After ten-time runs, the mineralization ratio of the GF-Co was still 89.5 %, suggesting that GF-Co was very promising for wastewater treatment. The addition of isopropanol proved that ·OH played an important role in degradation of MO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ai ZH, Gao ZT, Zhang LZ, He WW, Yin JJ (2013) Core-shell structure dependent reactivity of Fe@Fe2O3 nanowires on aerobic degradation of 4-chlorophenol. Environ Sci Technol 47:5344–5352. doi:10.1021/es4005202

    Article  CAS  Google Scholar 

  • Ai ZH, Lu LR, Li JP, Zhang LZ, Qiu JR, Wu MH (2007a) Fe@Fe2O3 core-shell nanowires as the iron reagent. 2. An efficient and reusable sono-Fenton system working at neutral pH. J Phys Chem C 111:7430–7436. doi:10.1021/jp070412v

    Article  CAS  Google Scholar 

  • Ai ZH, Mei T, Liu J, Li JP, Jia FL, Zhang LZ, Qiu JR (2007b) Fe@Fe2O3 core-shell nanowires as an iron reagent. 3. Their combination with CNTs as an effective oxygen-fed gas diffusion electrode in a neutral electro-Fenton system. J Phys Chem C 111:14799–14803. doi:10.1021/jp073617c

    Article  CAS  Google Scholar 

  • Ai ZH, Xiao HY, Mei T, Liu J, Zhang LZ, Deng KJ, Qiu JR (2008) Electro-Fenton degradation of rhodamine B based on a composite cathode of Cu2O nanocubes and carbon nanotubes. J Phys Chem C 112:11929–11935. doi:10.1021/jp803243t

    Article  CAS  Google Scholar 

  • Ammar S, Oturan MA, Labiadh L, Guersalli A, Abdelhedi R, Oturan N, Brillas E (2015) Degradation of tyrosol by a novel electro-Fenton process using pyrite as heterogeneous source of iron catalyst. Water Res 74:77–87. doi:10.1016/j.watres.2015.02.006

    Article  CAS  Google Scholar 

  • Bonakdarpour A, Esau D, Cheng H, Wang A, Gyenge E, Wilkinson DP (2011) Preparation and electrochemical studies of metal-carbon composite catalysts for small-scale electrosynthesis of H2O2. Electrochim Acta 56:9074–9081. doi:10.1016/j.electacta.2011.06.043

    Article  CAS  Google Scholar 

  • Brillas E, Calpe JC, Casado J (2000) Mineralization of 2,4-D by advanced electrochemical oxidation processes. Water Res 34:2253–2262. doi:10.1016/S0043-1354(99)00396-6

    Article  CAS  Google Scholar 

  • Brillas E, Martinez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B-Environ 166:603–643. doi:10.1016/j.apcatb.2014.11.016

    Article  Google Scholar 

  • Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry. Chem Rev 109:6570–6631. doi:10.1021/cr900136g

    Article  CAS  Google Scholar 

  • Dhakshinamoorthy A, Navalon S, Alvaro M, Garcia H (2012) Metal nanoparticles as heterogeneous Fenton catalysts. ChemSusChem 5:46–64. doi:10.1002/cssc.201100517

    Article  CAS  Google Scholar 

  • El-Ghenymy A, Garrido JA, Centellas F, Arias C, Cabot PL, Rodriguez RM, Brillas E (2012) Electro-Fenton and photoelectro-Fenton degradation of sulfanilic acid using a boron-doped diamond anode and an air diffusion cathode. J Phys Chem A 116:3404–3412. doi:10.1021/jp300442y

    Article  CAS  Google Scholar 

  • Fan Y, Ai ZH, Zhang LZ (2010) Design of an electro-Fenton system with a novel sandwich film cathode for wastewater treatment. J Hazard Mater 176:678–684. doi:10.1016/j.jhazmat.2009.11.085

    Article  CAS  Google Scholar 

  • Feng HM, Zheng JC, Lei NY, Yu L, Kong KHK, Yu HQ, Lau TC, Lam MHW (2011) Photoassisted Fenton degradation of polystyrene. Environ Sci Technol 45:744–750. doi:10.1021/es102182g

    Article  CAS  Google Scholar 

  • Garcia-Segura S, Garrido JA, Rodriguez RM, Cabot PL, Centellas F, Arias C, Brillas E (2012) Mineralization of flumequine in acidic medium by electro-Fenton and photoelectro-Fenton processes. Water Res 46:2067–2076. doi:10.1016/j.watres.2012.01.019

    Article  CAS  Google Scholar 

  • Huang RX, Fang ZQ, Yan XM, Cheng W (2012) Heterogeneous sono-Fenton catalytic degradation of bisphenol A by Fe3O4 magnetic nanoparticles under neutral condition. Chem Eng J 197:242–249. doi:10.1016/j.cej.2012.05.035

    Article  CAS  Google Scholar 

  • Isarain-Chavez E, Arias C, Cabot PL, Centellas F, Rodriguez RM, Garrido JA, Brillas E (2010) Mineralization of the drug beta-blocker atenolol by electro-Fenton and photoelectro-Fenton using an air-diffusion cathode for H2O2 electrogeneration combined with a carbon-felt cathode for Fe2+ regeneration. Appl Catal B-Environ 96:361–369. doi:10.1016/j.apcatb.2010.02.033

    Article  CAS  Google Scholar 

  • Isarain-Chavez E, de la Rosa C, Martinez-Huitle CA, Peralta-Hernandez JM (2013) On-site hydrogen peroxide production at pilot flow plant: application to electro-Fenton process. Int J Electrochem Sci 8:3084–3094

    CAS  Google Scholar 

  • Jin YN, Zhao GH, Wu MF, Lei YZ, Li MF, Jin XP (2011) In situ induced visible-light photoeletrocatalytic activity from molecular oxygen on carbon aerogel-supported TiO2. J Phys Chem C 115:9917–9925. doi:10.1021/jp2009429

    Article  CAS  Google Scholar 

  • Liang XL, Zhong YH, Zhu SY, Ma LY, Yuan P, Zhu JX, He HP, Jiang Z (2012) The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite. J Hazard Mater 199:247–254. doi:10.1016/j.jhazmat.2011.11.007

    Article  Google Scholar 

  • Liu Z, Wang F, Li Y, Xu T, Zhu S (2011) Continuous electrochemical oxidation of methyl orange waste water using a three-dimensional electrode reactor. J Environ Sci 23:S70–S73. doi:10.1016/s1001-0742(11)61081-4

    Article  Google Scholar 

  • Martinez-Huitle CA, Rodrigo MA, Sirés I, Scialdone O (2015) Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chem Rev 115:13362–13407. doi:10.1021/acs.chemrev.5b00361

    Article  CAS  Google Scholar 

  • Miao J, Zhu H, Tang Y, Chen YM, Wan PY (2014) Graphite felt electrochemically modified in H2SO4 solution used as a cathode to produce H2O2 for pre-oxidation of drinking water. Chem Eng J 250:312–318. doi:10.1016/j.cej.2014.03.043

    Article  CAS  Google Scholar 

  • Navalon S, Dhakshinamoorthy A, Alvaro M, Garcia H (2011) Heterogeneous Fenton catalysts based on activated carbon and related materials. ChemSusChem 4:1712–1730. doi:10.1002/cssc.201100216

    Article  CAS  Google Scholar 

  • Nidheesh PV, Gandhimathi R (2012) Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 299:1–15. doi:10.1016/j.desal.2012.05.011

    Article  CAS  Google Scholar 

  • Oturan N, Wu J, Zhang H, Sharma VK, Oturan MA (2013) Electrocatalytic destruction of the antibiotic tetracycline in aqueous medium by electrochemical advanced oxidation processes: effect of electrode materials. Appl Catal B-Environ 140:92–97. doi:10.1016/j.apcatb.2013.03.035

    Article  Google Scholar 

  • Özcan A, Sahin Y, Koparal AS, Oturan MA (2008) Carbon sponge as a new cathode material for the electro-Fenton process: comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium. J Electroanal Chem 616:71–78. doi:10.1016/j.jelechem.2008.01.002

    Article  Google Scholar 

  • Özcan A, Sahin Y, Koparal AS, Oturan MA (2009) A comparative study on the efficiency of electro-Fenton process in the removal of propham from water. Appl Catal B-Environ 89:620–626. doi:10.1016/j.apcatb.2009.01.022

    Article  Google Scholar 

  • Panizza M, Oturan MA (2011) Degradation of alizarin red by electro-Fenton process using a graphite-felt cathode. Electrochim Acta 56:7084–7087. doi:10.1016/j.electacta.2011.05.105

    Article  CAS  Google Scholar 

  • Pimentel M, Oturan N, Dezotti M, Oturan MA (2008) Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl Catal B-Environ 83:140–149. doi:10.1016/j.apcatb.2008.02.011

    Article  CAS  Google Scholar 

  • Ramírez C, Saldaña A, Hernández B, Acero R, Guerra R, Garcia-Segura S, Brillas E, Peralta-Hernandez JM (2013) Electrochemical oxidation of methyl orange azo dye at pilot flow plant using BDD technology. J Ind Eng Chem 19:571–579. doi:10.1016/j.jiec.2012.09.010

    Article  Google Scholar 

  • Recio FJ, Herrasti P, Sirés I, Kulak AN, Bavykin DV, Ponce-de-León C, Walsh FC (2011) The preparation of PbO2 coatings on reticulated vitreous carbon for the electro-oxidation of organic pollutants. Electrochim Acta 56:5158–5165. doi:10.1016/j.electacta.2011.03.054

    Article  CAS  Google Scholar 

  • Richard C, Bosquet F, Pilichowski JF (1997) Photocatalytic transformation of aromatic compounds in aqueous zinc oxide suspensions: effect of substrate concentration on the distribution of products. J Photoch Photobio A-Chem 108:45–49. doi:10.1016/S1010-6030(96)04431-0

    Article  CAS  Google Scholar 

  • Scialdone O, Galia A, Sabatino S (2013) Electro-generation of H2O2 and abatement of organic pollutant in water by an electro-Fenton process in a microfluidic reactor. Electrochem Commun 26:45–47. doi:10.1016/j.elecom.2012.10.006

    Article  CAS  Google Scholar 

  • Segura Y, Martinez F, Melero JA, Molina R, Chand R, Bremner DH (2012) Enhancement of the advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of phenol. Appl Catal B-Environ 113:100–106. doi:10.1016/j.apcatb.2011.11.024

    Article  Google Scholar 

  • Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut R 21:8336–8367. doi:10.1007/s11356-014-2783-1

    Article  Google Scholar 

  • Torres RA, Abdelmalek F, Combet E, Petrier C, Pulgarin C (2007) A comparative study of ultrasonic cavitation and Fenton's reagent for bisphenol a degradation in deionised and natural waters. J Hazard Mater 146:546–551. doi:10.1016/j.jhazmat.2007.04.056

    Article  CAS  Google Scholar 

  • Valdes-Solis T, Valle-Vigon P, Alvarez S, Marban G, Fuertes AB (2007) Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst. Catal Commun 8:2037–2042. doi:10.1016/j.catcom.2007.03.030

    Article  CAS  Google Scholar 

  • Wang AM, Qu JH, Ru J, Liu HJ, Ge JT (2005) Mineralization of an azo dye acid red 14 by electro-Fenton's reagent using an activated carbon fiber cathode. Dyes Pigments 65:227–233. doi:10.1016/j.dyepig.2004.07.019

    Article  CAS  Google Scholar 

  • Wang Y, Liu YH, Wang K, Song SQ, Tsiakaras P, Liu H (2015a) Preparation and characterization of a novel KOH activated graphite felt cathode for the electro-Fenton process. Appl Catal B-Environ 165:360–368. doi:10.1016/j.apcatb.2014.09.074

    Article  CAS  Google Scholar 

  • Wang YB, Zhao HY, Zhao GH (2015b) Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants. Appl Catal B-Environ 164:396–406. doi:10.1016/j.apcatb.2014.09.047

    Article  CAS  Google Scholar 

  • Wang YJ, Zhao GH, Chai SN, Zhao HY, Wang YB (2013a) Three-dimensional homogeneous ferrite-carbon aerogel: one pot fabrication and enhanced electro-Fenton reactivity. Acs Appl Mater Inter 5:842–852. doi:10.1021/am302437a

    Article  CAS  Google Scholar 

  • Wang YJ, Zhao HY, Chai SN, Wang YB, Zhao GH, Li DM (2013b) Electrosorption enhanced electro-Fenton process for efficient mineralization of imidacloprid based on mixed-valence iron oxide composite cathode at neutral pH. Chem Eng J 223:524–535. doi:10.1016/j.cej.2013.03.016

    Article  CAS  Google Scholar 

  • Wu MF, Jin YN, Zhao GH, Li MF, Li DM (2010) Electrosorption-promoted photodegradation of opaque wastewater on a novel TiO2/carbon aerogel electrode. Environ Sci Technol 44:1780–1785. doi:10.1021/es903201m

    Article  CAS  Google Scholar 

  • Yu FK, Zhou MH, Yu XM (2015a) Cost-effective electro-Fenton using modified graphite felt that dramatically enhanced on H2O2 electro-generation without external aeration. Electrochim Acta 163:182–189. doi:10.1016/j.electacta.2015.02.166

    Article  CAS  Google Scholar 

  • Yu XM, Zhou MH, Ren GB, Ma L (2015b) A novel dual gas diffusion electrodes system for efficient hydrogen peroxide generation used in electro-Fenton. Chem Eng J 263:92–100. doi:10.1016/j.cej.2014.11.053

    Article  CAS  Google Scholar 

  • Zhang C, Zhou MH, Ren GB, Yu XM, Ma L, Yang J, Yu FK (2015) Heterogeneous electro-Fenton using modified iron-carbon as catalyst for 2,4-dichlorophenol degradation: influence factors, mechanism and degradation pathway. Water Res 70:414–424. doi:10.1016/j.watres.2014.12.022

    Article  CAS  Google Scholar 

  • Zhang GQ, Wang S, Yang FL (2012) Efficient adsorption and combined heterogeneous/homogeneous Fenton oxidation of amaranth using supported nano-FeOOH as cathodic catalysts. J Phys Chem C 116:3623–3634. doi:10.1021/jp210167b

    Article  CAS  Google Scholar 

  • Zhang GQ, Yang FL, Gao MM, Fang XH, Liu LF (2008a) Electro-Fenton degradation of azo dye using polypyrrole/anthraquinonedisulphonate composite film modified graphite cathode in acidic aqueous solutions. Electrochim Acta 53:5155–5161. doi:10.1016/j.electacta.2008.01.008

    Article  CAS  Google Scholar 

  • Zhang GQ, Yang FL, Gao MM, Liu LF (2008b) Electrocatalytic behavior of the bare and the anthraquinonedisulfonate/polypyrrole composite film modified graphite cathodes in the electro-Fenton system. J Phys Chem C 112:8957–8962. doi:10.1021/jp800757v

    Article  CAS  Google Scholar 

  • Zhang XW, Fu JL, Zhang Y, Lei LC (2008c) A nitrogen functionalized carbon nanotube cathode for highly efficient electrocatalytic generation of H2O2 in electro-Fenton system. Sep Purif Technol 64:116–123. doi:10.1016/j.seppur.2008.07.020

    Article  CAS  Google Scholar 

  • Zhang XW, Lei LC, Xia B, Zhang Y, Fu JL (2009) Oxidization of carbon nanotubes through hydroxyl radical induced by pulsed O2 plasma and its application for O2 reduction in electro-Fenton. Electrochim Acta 54:2810–2817. doi:10.1016/j.electacta.2008.11.029

    Article  CAS  Google Scholar 

  • Zhao HY, Wang YJ, Wang YB, Cao TC, Zhao GH (2012) Electro-Fenton oxidation of pesticides with a novel Fe3O4@Fe2O3/activated carbon aerogel cathode: high activity, wide pH range and catalytic mechanism. Appl Catal B-Environ 125:120–127. doi:10.1016/j.apcatb.2012.05.044

    Article  CAS  Google Scholar 

  • Zhao KJ, Zhao GH, Li PQ, Gao JX, Lv BY, Li DM (2010) A novel method for photodegradation of high-chroma dye wastewater via electrochemical pre-oxidation. Chemosphere 80:410–415. doi:10.1016/j.chemosphere.2010.04.019

    Article  CAS  Google Scholar 

  • Zhao YB, Pan F, Li H, Niu TC, Xu GQ, Chen W (2013) Facile synthesis of uniform alpha-Fe2O3 crystals and their facet-dependent catalytic performance in the photo-Fenton reaction. J Mater Chem A 1:7242–7246. doi:10.1039/c3ta10966f

    Article  CAS  Google Scholar 

  • Zhou L, Zhou MH, Hu ZX, Bi ZH, Serrano KG (2014) Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation. Electrochim Acta 140:376–383. doi:10.1016/j.electacta.2014.04.090

    Article  CAS  Google Scholar 

  • Zhou MH, Tan QQ, Wang Q, Jiao YL, Oturan N, Oturan MA (2012) Degradation of organics in reverse osmosis concentrate by electro-Fenton process. J Hazard Mater 215:287–293. doi:10.1016/j.jhazmat.2012.02.070

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China (no. 21273120 and 51178225), National High Technology Research and Development Program of China (2013AA065901 and 2013AA06A205), and National Special S&T Project on Water Pollution Control and Management (2015ZX07203-011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghua Zhou.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Yu, F., An, Y. et al. Preparation of transition metal composite graphite felt cathode for efficient heterogeneous electro-Fenton process. Environ Sci Pollut Res 24, 1122–1132 (2017). https://doi.org/10.1007/s11356-016-7389-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7389-3

Keywords

Navigation