Skip to main content

Advertisement

Log in

Estimating ecosystem metabolism from continuous multi-sensor measurements in the Seine River

  • Spatial and temporal patterns of anthropogenic influence in a large river basin. A multidisciplinary approach
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Large rivers are important components of the global C cycle. While they are facing an overall degradation of their water quality, little remains known about the dynamics of their metabolism. In the present study, we used continuous multi-sensors measurements to assess the temporal variability of gross primary production (GPP) and ecosystem respiration (ER) rates of the anthropized Seine River over an annual cycle. Downstream from the Paris urban area, the Seine River is net heterotrophic at the annual scale (−226 gO2 m−2 year−1 or −264 gC m−2 year−1). Yet, it displays a net autotrophy at the daily and seasonal scales during phytoplankton blooms occurring from late winter to early summer. Multivariate analyses were performed to identify the drivers of river metabolism. Daily GPP is best predicted by chlorophyll a (Chla), water temperature (T), light, and rainfalls, and the coupling of daily GPP and Chla allows for the estimation of the productivity rates of the different phytoplankton communities. ER rates are mainly controlled by T and, to a lesser extent, by Chla. The increase of combined sewer overflows related to storm events during the second half of the year stimulates ER and the net heterotrophy of the river. River metabolism is, thus, controlled at different timescales by factors that are affected by human pressures. Continuous monitoring of river metabolism must, therefore, be pursued to deepen our understanding about the responses of ecosystem processes to changing human pressures and climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acuna V, Giorgi A, Munoz I, Uehlinger U, Sabater S (2004) Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshwater Biol 49:960–971

    Article  Google Scholar 

  • Aristegi L, Izagirre O, Elosegi A (2009) Comparison of several methods to calculate reaeration in streams, and their effects on estimation of metabolism. Hydrobiologia 635:113–124

    Article  CAS  Google Scholar 

  • Aufdenkampe A, Mayorga KE, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo K (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60

    Article  Google Scholar 

  • Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2008) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100

    Article  CAS  Google Scholar 

  • Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ (2009) The boundless carbon cycle. Nat Geosci 2:598–600

    Article  CAS  Google Scholar 

  • Beaulieu JJ, Arango CP, Balz DA, Shuster WD (2013) Continuous monitoring reveals multiple controls on ecosystem metabolism in a suburban stream. Freshwater Biol 58:918–937

    Article  CAS  Google Scholar 

  • Benson BB, Krause JD (1984) The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere. Limnol Oceanogr 29(3):620–632

    Article  CAS  Google Scholar 

  • Bernot MJ, Sobota DJ, Hall RO, Mulholland PJ, Dodds WK, Webster JR, Tank JL, Ashkenas LR, Cooper LW, Dahm CN, Gregory SV, Grimm NB, Hamilton SK, Johnson SL, McDowell WH, Meyer JL, Peterson B, Poole GC, Valett HM, Arango C, Beaulieu JJ, Burgin AJ, Crenshaw C, Helton AM, Johnson L, Merriam J, Niederlehner BR, O’Brien JM, Potter JD, Sheibley RW, Thomas SM, Wilson K (2010) Inter-regional comparison of land-use effects on stream metabolism. Freshwater Biol 55:1874–1890

    Article  Google Scholar 

  • Bott TL, Montgomery DS, Newbold JD, Arscott DB, Dow CL, Aufdenkampe AK, Jackson JK, Kaplan LA (2006) Ecosystem metabolism in streams of the Catskill Mountains (Delaware and Hudson River watersheds) and Lower Hudson Valley. J N Am Benthol Soc 25:1018–1044

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Catherine A, Escoffier N, Belhocine A, Nasri AB, Hamlaoui S, Yepremian C, Bernard C, Troussellier M (2012) On the use of the FluoroProbe (R), a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Water Res 46:1771–1784

    Article  CAS  Google Scholar 

  • Cox BA (2003) A review of dissolved oxygen modelling techniques for lowland rivers. Sci Total Environ 314–316:303–334

    Article  CAS  Google Scholar 

  • Demars BOL, Thompson J, Russell Manson J (2015) Stream metabolism and the open diel oxygen method: Principles, practice, and perspectives. Limnol Oceanogr-Meth 13:356–374

  • Dodds WK, Cole JJ (2007) Expanding the concept of trophic state in aquatic ecosystems: It’s not just the autotrophs. Aquat Sci 69:427–439

    Article  CAS  Google Scholar 

  • Dodds WK, Veach AM, Ruffing CM, Larson DM, Fischer JL, Costigan KH (2013) Abiotic controls and temporal variability of river metabolism: multiyear analyses of Mississippi and Chattahoochee River data. Freshwater Science 32:1073–1087

    Article  Google Scholar 

  • Duarte CM, Prairie YT (2005) Prevalence of heterotrophy and atmospheric CO2 emissions from aquatic ecosystems. Ecosystems 8:862–870

    Article  CAS  Google Scholar 

  • EC (2000) European Commission Directive 2000/60/EC of the European Parliament and of the council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off J Eur Commun L327:1–72

    Google Scholar 

  • Escoffier N, Bernard C, Hamlaoui S, Groleau A, Catherine A (2015) Quantifying phytoplankton communities using spectral fluorescence: the effects of species composition and physiological state. J Plankton Res 37(1):233–247

    Article  CAS  Google Scholar 

  • Even S, Poulin M, Mouchel JM, Seidl M, Servais P (2004) Modelling oxygen deficits in the Seine River downstream of combined sewer overflows. Ecol Model 173:177–196

    Article  CAS  Google Scholar 

  • Even S, Mouchel M, Servais P, Flipo N, Poulin M, Blanc S, Chabanel M, Paffoni C (2007) Modelling the impacts of combined sewer overflows on the river Seine water quality. Sci Total Environ 375:140–151

    Article  CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, second edition. Princeton University Press, Princeton, New Jersey, p 484

    Google Scholar 

  • Finlay JC (2011) Stream size and human influences on ecosystem production in river networks. Ecosphere 2(8):art87

    Article  Google Scholar 

  • Flipo N, Rabouille C, Poulin M, Even S, Tusseau-Vuillemin MH, Lalande M (2007) Primary production in headwater streams of the Seine basin: the Grand Morin river case study. Sci Total Environ 375:98–109

    Article  CAS  Google Scholar 

  • Garnier J, Billen G (2007) Production vs. respiration in river systems: An indicator of an “ecological status”. Sci Total Environ 375:110–124

    Article  CAS  Google Scholar 

  • Garnier J, Billen G, Coste M (1995) Seasonal succession of diatoms and chlorophyceae in the drainage network of the seine river—observations and modeling. Limnol Oceanogr 40:750–765

    Article  CAS  Google Scholar 

  • Garnier J, Servais P, Billen G, Akopian M, Brion N (2001) Lower Seine river and estuary (France) carbon and oxygen budgets during low flow. Estuaries 24:964–976

    Article  CAS  Google Scholar 

  • Hall RO, Beaulieu JJ (2013) Estimating autotrophic respiration in streams using daily metabolism data. Freshwater Science 32(2):507–516

    Article  Google Scholar 

  • Hall RO, Tank JL (2005) Correcting whole-stream estimates of metabolism for groundwater input. Limnol Oceanogr-Meth 3:222–229

    Article  CAS  Google Scholar 

  • Hall RO, Tank JL, Baker MA, Rosi-Marshall EJ, Hotchkiss er (2015) Metabolism, gas exchange and carbon spiraling in Rivers. Ecosystems DOI: 10.1007/s10021-015-9918-1

  • Holtgrieve GW, Schindler DE, Branch TA, A’Mar ZT (2010) Simultaneous quantification of aquatic ecosystem metabolism and reaeration using a Bayesian statistical model of oxygen dynamics. Limnol Oceanogr 55:1047–1063

    Article  CAS  Google Scholar 

  • Hunt RJ, Jardine TD, Hamilton SK, Bunn SE (2012) Temporal and spatial variation in ecosystem metabolism and food web carbon transfer in a wet-dry tropical river. Freshwater Biol 57:435–450

    Article  CAS  Google Scholar 

  • Izagirre O, Agirre U, Bermejo M, Pozo J, Elosegi A (2008) Environmental controls of whole-stream metabolism identified from continuous monitoring of Basque streams. J N Am Benthol Soc 27:252–268

    Article  Google Scholar 

  • Kruskopf M, Flynn KJ (2007) Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol 169:525–536

    Article  CAS  Google Scholar 

  • MATLAB (2012) Version 8.0. The MathWorks Inc., Natick, Massachusetts

    Google Scholar 

  • Maynard JJ, Dahlgren RA, O’Geen AT (2012) Quantifying spatial variability and biogeochemical controls of ecosystem metabolism in a eutrophic flow-through wetland. Ecol Eng 47:221–236

    Article  Google Scholar 

  • Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: health synthesis., 64pp, WHO Library

    Google Scholar 

  • Mulholland PJ, Fellows CS, Tank JL, Grimm NB, Webster JR, Hamilton SK, Marti E, Ashkenas L, Bowden WB, Dodds WK, McDowell WH, Paul MJ, Peterson BJ (2001) Inter-biome comparison of factors controlling stream metabolism. Freshwater Biol 46:1503–1517

    Article  CAS  Google Scholar 

  • Needoba JA, Peterson TD, Johnson KS (2012) Method for the Quantification of Aquatic Primary Production and Net Ecosystem Metabolism using in situ Dissolved Oxygen Sensors. in Molecular Biological Technologies for Ocean Sensing. Springer Protocols Handbooks, Chapter 4, pp 73–101

  • Odum HT (1956) Primary production in flowing waters. Limnol Oceanogr 1:102–117

    Article  Google Scholar 

  • Oliver RL, Merrick CJ (2006) Partitioning of river metabolism identifies phytoplankton as a major contributor in the regulated Murray River (Australia). Freshwater Biol 51:1131–1148

    Article  CAS  Google Scholar 

  • Raimonet M, Vilmin L, Flipo N, Rocher V, Laverman A (2015) Modeling the fate of nitrite in an urbanized river using experimentally obtained nitrifier growth parameters. Water Res 73:373–387

    Article  CAS  Google Scholar 

  • Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359

    Article  CAS  Google Scholar 

  • Reichert P, Uehlinger U, Acuna V (2009) Estimating stream metabolism from oxygen concentrations: effect of spatial heterogeneity. Journal of Geophysical Research-Biogeosciences 114

  • Riley AJ, Dodds WK (2013) Whole-stream metabolism: strategies for measuring and modeling diel trends of dissolved oxygen. Freshwater Science 32:56–69

    Article  Google Scholar 

  • Roberts BJ, Mulholland PJ, Hill WR (2007) Multiple scales of temporal variability in ecosystem metabolism rates: results from 2 years of continuous monitoring in a forested headwater stream. Ecosystems 10:588–606

    Article  CAS  Google Scholar 

  • Servais PJ, Garnier J, Demarteau N, Brion N, Billen G (1999) Supply of organic matter and bacteria to aquatic ecosystems through wastewater effluents. Water Res 33:3521–3531

    Article  CAS  Google Scholar 

  • Staehr PA, Bade D, Van de Bogert MC, Koch GR, Williamson C, Hanson P, Cole JJ, Kratz T (2010) Lake metabolism and the diel oxygen technique: state of the science. Limnol Oceanogr-Meth 8:628–644

    Article  CAS  Google Scholar 

  • Stanley EH, Powers SM, Lottig NR, Buffam I, Crawford JT (2012) Contemporary changes in DOC human-dominated rivers: is there a role for DOC management? Freshwater Biol 57(Suppl 1):26–42

    Article  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Transactions American Geophysical Union 38:913–920

    Article  Google Scholar 

  • Thibodeaux L, Poulin M, Even S (1994) A model for enhanced aeration of streams by motor vessels with application to the Seine river. J Hazard Mater 37:459–473

    Article  CAS  Google Scholar 

  • Townsend SA, Webster IT, Schult JH (2011) Metabolism in a groundwater-fed river system in the Australian wet/dry tropics: tight coupling of photosynthesis and respiration. J N Am Benthol Soc 30(3):603–620

    Article  Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, Kortelainen PL, Kutser T, Larsen S, Laurion I, Leech DM, McCallister SL, McKnight DM, Melack JM, Overholt E, Porter JA, Prairie Y, Renwick WH, Roland F, Sherman BS, Schindler DW, Sobek S, Tremblay A, Vanni MJ, Verschoor AM, von Wachenfeldt E, Weyhenmeyer GA (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314

    Article  CAS  Google Scholar 

  • Uehlinger U (2006) Annual cycle and inter-annual variability of gross primary production and ecosystem respiration in a floodprone river during a 15-year period. Freshwater Biol 51:938–950

    Article  CAS  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) River continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Vighi M, Finizio A, Villa S (2006) The evolution of the environmental quality concept: From the US EPA red book to the European Water Framework Directive. Environ Sci Pollut R 13:9–14

    Article  CAS  Google Scholar 

  • Vilmin L, Flipo N, Escoffier N, Rocher V, Groleau A (2016) Carbon fate in a large temperate human-impacted river system: focus on benthic dynamics. Global Biogeochem Cycles

  • Vilmin L, Flipo N, de Fouquet C, Poulin M (2015) Pluri-annual sediment budget in a navigated river system: the Seine River (France). Sci Total Environ 502:48–59

    Article  CAS  Google Scholar 

  • Vink S, Bormans M, Ford PW, Grigg NJ (2005) Quantifying ecosystem metabolism in the middle reaches of Murrumbidgee River during irrigation flow releases. Mar Freshwater Res 56:227–241

    Article  CAS  Google Scholar 

  • Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, Morgan RP (2005) The urban stream syndrome: current knowledge and the search for a cure. J N Am Benthol Soc 24:706–723

    Article  Google Scholar 

  • Wenger SJ, Roy AH, Jackson CR, Bernhardt ES, Carter TL, Filoso S et al (2009) Twenty six key research questions in urban stream ecology: an assessment of the state of the science. J N Am Benthol Soc 28(4):1080–1098

    Article  Google Scholar 

  • Winkler LW (1888) Die besistimmung des in wasser gelosten sanerstoffen. Berichte der deutsche chemischen geschlschaft 21:2542–2855

    Google Scholar 

  • Young RG, Matthaei CD, Townsend CR (2008) Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. J N Am Benthol Soc 27:605–625

    Article  Google Scholar 

  • Yvon-Durocher G, Caffrey JM, Cescatti A, Dossena M, del Giorgio P, Gasol JM, Montoya JM, Pumpanen J, Staehr PA, Trimmer M, Woodward G, Allen AP (2012) Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487:472–476

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the R2DS 2010 CarboSeine and PIREN-Seine research programs and also supported by a CIFRE grant awarded to N. Escoffier with Nke Instrumentation. L. Vilmin also benefited from a PhD fellowship funded by the Ile-de-France R2DS CarboSeine project. Most of the authors belong to the FR3020 FIRE (Fédération Ile-de-France de Recherche en Environnement). The authors thank the colleagues of the UMR 7245, Equipe CCE of the National Museum of Natural History for providing help on fluorometer calibration and phytoplankton analyses. The authors are also grateful to two reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Escoffier.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escoffier, N., Bensoussan, N., Vilmin, L. et al. Estimating ecosystem metabolism from continuous multi-sensor measurements in the Seine River. Environ Sci Pollut Res 25, 23451–23467 (2018). https://doi.org/10.1007/s11356-016-7096-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7096-0

Keywords

Navigation