Skip to main content
Log in

Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Although the chemical reduction and advanced oxidation processes have been widely used individually, very few studies have assessed the combined reduction/oxidation approach for soil remediation. In the present study, experiments were performed in spiked sand and historically contaminated soil by using four synthetic nanoparticles (Fe0, Fe/Ni, Fe3O4, Fe3 − x Ni x O4). These nanoparticles were tested firstly for reductive transformation of polychlorinated biphenyls (PCBs) and then employed as catalysts to promote chemical oxidation reactions (H2O2 or persulfate). Obtained results indicated that bimetallic nanoparticles Fe/Ni showed the highest efficiency in reduction of PCB28 and PCB118 in spiked sand (97 and 79 %, respectively), whereas magnetite (Fe3O4) exhibited a high catalytic stability during the combined reduction/oxidation approach. In chemical oxidation, persulfate showed higher PCB degradation extent than hydrogen peroxide. As expected, the degradation efficiency was found to be limited in historically contaminated soil, where only Fe0 and Fe/Ni particles exhibited reductive capability towards PCBs (13 and 18 %). In oxidation step, the highest degradation extents were obtained in presence of Fe0 and Fe/Ni (18–19 %). The increase in particle and oxidant doses improved the efficiency of treatment, but overall degradation extents did not exceed 30 %, suggesting that only a small part of PCBs in soil was available for reaction with catalyst and/or oxidant. The use of organic solvent or cyclodextrin to improve the PCB availability in soil did not enhance degradation efficiency, underscoring the strong impact of soil matrix. Moreover, a better PCB degradation was observed in sand spiked with extractable organic matter separated from contaminated soil. In contrast to fractions with higher particle size (250–500 and <500 μm), no PCB degradation was observed in the finest fraction (≤250 μm) having higher organic matter content. These findings may have important practical implications to promote successively reduction and oxidation reactions in soils and understand the impact of soil properties on remediation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2000) Toxicological profile for polychlorinated biphenyls (PCBs)

    Google Scholar 

  • Al-Shamsi MA, Thomson NR (2013) Treatment of organic compounds by activated persulfate using nanoscale zerovalent iron. Ind Eng Chem Res 52:13564–13571

    Article  CAS  Google Scholar 

  • Anitescu G, Tavlaride LL (2005) Oxidation of biphenyl in supercritical water: reaction kinetics, key pathways, and main products. Ind Eng Chem Res 44:1226–1232

    Article  CAS  Google Scholar 

  • Aristov N, Habekost A (2010) Heterogeneous dehalogenation of PCBs with iron/toluene or iron/quicklime. Chemosphere 80:113–115

    Article  CAS  Google Scholar 

  • Bogan BW, Trbovic V (2003) Effect of sequestration on PAH degradability with Fenton’s reagent: roles of total organic carbon, humin, and soil porosity. J Hazard Mater 100:285–300

    Article  CAS  Google Scholar 

  • Cavanagh. J.-A.E. (2006) Comparison of soil guideline values used in New Zealand and their derivations. Landcare Research Contract Report. LC0607/025

  • Canadian Council of Ministers of Environment (CCME) (1999) Canadian soil quality guidelines for the protection of environmental and human health. Total PCBs

  • Choi H, Al-Abed SR, Agarwal S, Dionysiou DD (2008) Synthesis of reactive nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chem Mater 20:3649–3655

    Article  CAS  Google Scholar 

  • Christensen A, Gurol MD, Garoma T (2009) Treatment of persistent organic compounds by integrated advanced oxidation processes and sequential batch reactor. Water Res 43:3910–3921

    Article  CAS  Google Scholar 

  • Chuang F-W, Larson RA, Scully Wessman M (1995) Zero-valent iron-promoted dechlorination of polychlorinated biphenyls. Environ Sci Technol 29:2460–2463

    Article  CAS  Google Scholar 

  • Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  CAS  Google Scholar 

  • David I, Welch AJE (1956) The oxidation of magnetite and related spinels. Constitution of gamma ferric oxide. T Faraday Soc 52:1642–1650

    Article  CAS  Google Scholar 

  • Environmental Protection Authority (EPA) Victoria (2009) Environment protection (Industrial Waste Resource) regulations 2009. S.R. No. 77/2009

  • Fan G, Fan G, Cang L, Gomes HI, Zhou D (2016) Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of different activation methods. Chemosphere 144:138–147

    Article  CAS  Google Scholar 

  • Fang Y, Al-Abed SR (2008) Correlation of 2-chlorobiphenyl dechlorination by Fe/Pd with iron corrosion at different pH. Environ Sci Technol 42:6942–6948

    Article  CAS  Google Scholar 

  • Fang G-D, Dionysiou DD, Zhou D-M, Wang Y, Zhu X-D, Fan J-X, Cang L, Wang Y-J (2013) Transformation of polychlorinated biphenyls by persulfate at ambient temperature. Chemosphere 90:1573–1580

    Article  CAS  Google Scholar 

  • Feng J, Lim TT (2005) Pathways and kinetics of carbon tetrachloride and chloroform reductions by nanoscale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn. Chemosphere 58:1267–1277

    Article  Google Scholar 

  • Flotron V, Delteil C, Padellec Y, Camel V (2005) Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process. Chemosphere 59:1427–1437

    Article  CAS  Google Scholar 

  • Girvin DC, Scott AJ (1997) Polychlorinated biphenyl sorption by soils: measurement of soil-water partition coefficients at equilibrium. Chemosphere 35:2007–2025

    Article  CAS  Google Scholar 

  • Goi A, Trapido M (2004) Degradation of polycyclic aromatic hydrocarbons in soil: the Fenton reagent versus ozonation. Environ Technol 25:155–164

    Article  CAS  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ribeiro AB (2013) Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application. Sci Total Environ 445–446:237–260

    Article  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ottosen LM, Ribeiro AB (2014) Electrodialytic remediation of polychlorinated biphenyls contaminated soil with iron nanoparticles and two different surfactants. J Colloid Interf Sci 433:189–195

    Article  CAS  Google Scholar 

  • Gomes HI, Dias-Ferreira C, Ottosen LM, Ribeira AB (2015) Electroremediation of PCB contaminated soil combined with iron nanoparticles: effect of soil type. Chemosphere 131:157–163

    Article  CAS  Google Scholar 

  • Grittini C, Malcomson M, Fernando Q, Korte N (1995) Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environ Sci Technol 29:2898–2900

    Article  CAS  Google Scholar 

  • Hanna K, Kone T, Medjahdi G (2008) Synthesis of the mixed oxides of iron and quartz and their catalytic activities for the Fenton-like oxidation. Catal Commun 9:955–959

  • He F, Zhao D (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320

    Article  CAS  Google Scholar 

  • He N, Li P, Zhou Y, Ren W, Fan S, Verkhozina VA (2009) Catalytic dechlorination of polychlorinated biphenyls in soil by palladium–iron bimetallic catalyst. J Hazard Mater 164:126–132

    Article  CAS  Google Scholar 

  • Hornbuckle K, Robertson L (2010) Polychlorinated biphenyls (PCBs): sources, exposures, toxicities. Environ Sci Technol 44:2749–2751

    Article  CAS  Google Scholar 

  • Hong PKA, Nakra S, Kao CMJ, Hayes DF (2008) Pressure-assisted ozonation of PCB and PAH contaminated sediments. Chemosphere 72:1757–1764

  • Hong Y, Rheem Y, Lai MY, Cwiertny DM, Walker SL, Myung NV (2009) Electrochemical synthesis of FexNi1−x nanostructures for environmental remediation. Chem Eng J 151:66–72

    Article  CAS  Google Scholar 

  • Javorská H, Tlustoš P, Komárek M, Leštan D, Kaliszová R, Száková J (2008) Evaluation of chemical treatments for a mixed contaminant soil. J Environ Eng 134(9):743–749

    Article  Google Scholar 

  • Jonsson S, Persson Y, Frankki S, van Bavel B, Lundstedt S, Haglund P, Tysklind M (2007) Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton’s reagent: a multivariate evaluation of the importance of soil characteristics and PAH properties. J Hazard Mater 149:86–96

    Article  CAS  Google Scholar 

  • Kanel SR, Greneche J-M, Choi HS (2006) Arsenic (V) Removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050

    Article  CAS  Google Scholar 

  • Kaštánek F, Demnerová K, Pazlarová J, Burkhard J, Maléterová Y (1999) Biodegradation of polychlorinated biphenyls and volatile chlorinated hydrocarbons in contaminated soils and ground water in field condition. Int Biodeter Biodegr 44:39–47

    Article  Google Scholar 

  • Katsoyiannis IA, Ruettimann T, Hug SJ (2008) pH dependence of fenton reagent generation and As(III) oxidation and removal by corrosion of zero valent iron in aerated water. Environ Sci Technol 42:7424–7430

    Article  CAS  Google Scholar 

  • Kawahara FK, Davila B, Al-Abed SR, Vesper SJ, Ireland JC, Rock S (1995) Polynuclear aromatic hydrocarbon (PAH) release from soil during treatment with Fenton’s reagent. Chemosphere 31:4131–4142

    Article  CAS  Google Scholar 

  • Keenan CR, Sedlak DL (2008) Factors affecting the yield of oxidants from the reaction of nanonarticulate zero-valent iron and oxygen. Environ Sci Technol 42:1262–1267

    Article  CAS  Google Scholar 

  • Koenig S, Fernandez P, Sole M (2012) Differences in cytochrome P450 enzyme activities between fish and crustacea: relationship with the bioaccumulation patterns of polychlorobiphenyls (PCBs). Aquat Toxicol 108:11–17

    Article  CAS  Google Scholar 

  • Korte NE, West OR, Liang L, Gu B, Zutman JL, Fernando Q (2002) The effect of solvent concentration on the use of palladized-iron for the step-wise dechlorination of polychlorinated biphenyls in soil extracts. Waste Manage 22:343–349

    Article  CAS  Google Scholar 

  • Kubatova A, Herman J, Steckler TS, de Veij M, Miller DJ, Klunder EB, Wai CM, Hawthore SB (2003) Subcritical (hot/liquid) water dechlorination of PCBs (Aroclor 1254) with metal additives and in waste paint. Environ Sci Technol 37:5757–5762

    Article  CAS  Google Scholar 

  • Lauby-Secretan B, Loomis D, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K (2013) Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol 14:287–288

    Article  CAS  Google Scholar 

  • Li XQ, Zhang WX (2006) Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir 22:4638–4642

    Article  CAS  Google Scholar 

  • Liang C, Lai MC (2008) Trichloroethylene degradation by zero valent iron activated persulfate oxidation. Environ Eng Sci 25(7):1071–1077

    Article  CAS  Google Scholar 

  • Lindsey ME, Xu G, Lu J, Tarr MA (2003) Enhanced Fenton degradation of hydrophobic organics by simultaneous iron and pollutant complexation with cyclodextrins. Sci Total Environ 307:215–229

    Article  CAS  Google Scholar 

  • Lowry GV, Johnson KM (2004) Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ Sci Technol 38:5208–5216

    Article  CAS  Google Scholar 

  • Luo H, Jin S, Fallgren PH, Colberg PJS, Johnson PA (2010) Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation. Chem Eng J 160:185–189

    Article  CAS  Google Scholar 

  • Maloney P, DeVor R, Novaes-Card S, Saitta E, Quinn J, Clausen CA, Geiger CL (2011) Dechlorination of polychlorinated biphenyls using magnesium and acidified alcohols. J Hazard Mater 187:235–240

    Article  CAS  Google Scholar 

  • Matta R, Hanna K, Chiron S (2007) Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Sci Total Environ 385:242–251

  • Meijer SN, Ockenden WA, Sweetman A, Breivik K, Grimalt JO, Jones KC (2003) Global distribution and budget of PCBs and HCB in background surface soils: implications for sources and environmental processes. Environ Sci Technol 37:667–672

    Article  CAS  Google Scholar 

  • O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

    Article  CAS  Google Scholar 

  • Porta M, Zumeta E (2002) Implementing the Stockholm treaty on persistent organic pollutants. Occup Environ Med 10:651–652

    Article  Google Scholar 

  • Quiroga JM, Riaza A, Manzano MA (2009) Chemical degradation of PCB in the contaminated soils slurry: direct Fenton oxidation and desorption combined with the photo-Fenton process. J Environ Sci and Heal A 44:1120–1126

    Article  CAS  Google Scholar 

  • Ramos MAV, Yan W, Li X, Koel BE, Zhang W (2009) Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. J Phys Chem C 113:14591–14594

    Article  CAS  Google Scholar 

  • Rastogi A, Al-Abed SR, Dionysiou DD (2009) Sulfate radical-based ferrous–peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Appl Catal B-Environ 85:171–179

    Article  CAS  Google Scholar 

  • Romero A, Santos A, Cordero T, Rodríguez-Mirasol J, Rosas JM, Vicente F (2011) Soil remediation by Fenton-like process: phenol removal and soil organic matter modification. Chem Eng J 170:36–43

    Article  CAS  Google Scholar 

  • Salazar-Camacho C, Villalobos M, de la Luz R-SM, Arenas-Alatorre J, Alcaraz-Cienfuegos J, Gutiérrez-Ruiz ME (2013) Characterization and surface reactivity of natural and synthetic magnetites. Chem Geol 347:233–247

    Article  CAS  Google Scholar 

  • Schrick B, Blough JL, Jones AD, Mallouk TE (2012) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147

    Article  Google Scholar 

  • Schwertmann U, Cornell RM (2000) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH, New York

    Book  Google Scholar 

  • Sedlak DL, Andren AW (1991) Aqueous-phase oxidation of polychlorinated biphenyls by hydroxyl radicals. Environ Sci Technol 25:1419–1426

    Article  CAS  Google Scholar 

  • Sidhu PS, Gilkes RJ, Posner AM (1978) The synthesis and some properties of Co, Ni, Zn, Cu, Mn and Cd substituted magnetites. J Inorg Nucl Chem 40:429–435

    Article  CAS  Google Scholar 

  • Sun Y, Takaoka M, Takeda N, Matsumoto T, Oshita K (2006a) Kinetics on the decomposition of polychlorinated biphenyls with activated carbon-supported iron. Chemosphere 65:183–189

    Article  CAS  Google Scholar 

  • Sun Y-P, Li X, Cao J, Zhang W, Wang HP (2006b) Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Sci 120:47–56

    Article  CAS  Google Scholar 

  • Sung HJ, Feitz AJ, Sedlak DL, Waite TD (2005) Quantification of the oxidizing capacity of nanoparticulate zero-valent iron. Environ Sci Technol 39:1263–1268

    Article  Google Scholar 

  • Tang X, Hashmi MZ, Zeng B, Yang J, Shen C (2015) Application of iron-activated persulfate oxidation for the degradation of PCBs in soil. Chem Eng J 279:673–680

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2012) PCB Regulations at 40 CFR Part 761. Toxic Substances Control Act

  • Usman M, Faure P, Hanna K, Abdelmoula M, Ruby C (2012a) Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination. Fuel 96:270–276

    Article  CAS  Google Scholar 

  • Usman M, Faure P, Ruby C, Hanna K (2012b) Remediation of PAH-contaminated soils by magnetite catalyzed Fenton-like oxidation. Appl Catal B-Environ 117–118:10–17

    Article  Google Scholar 

  • Usman M, Faure P, Ruby C, Hanna K (2012c) Application of magnetite-activated persulfate oxidation for the degradation of PAHs in contaminated soils. Chemosphere 87:234–240

    Article  CAS  Google Scholar 

  • Varanasi P, Fullana Y, Sidhu S (2007) Remediation of PCB contaminated soils using iron nanoparticles. Chemosphere 66:1031–1038

    Article  CAS  Google Scholar 

  • Venkatachalam K, Arzuaga X, Chopra N, Gavalas VG, Xu J, Bhattacharyya D, Hennig B, Bachas LG (2008) Reductive dechlorination of 3,3′,4,4′-tetrachlorobiphenyl (PCB77) using palladium or palladium/iron nanoparticles and assessment of the reduction in toxic potency in vascular endothelial cells. J Hazard Mater 159:483–491

    Article  CAS  Google Scholar 

  • Viglianti C, Hanna K, de Brauera C, Germain P (2006) Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: experimental study. Environ Poll 140:427–435

    Article  CAS  Google Scholar 

  • Waisner S, Medina VF, Morrow AB, Nestler CC (2008) Pressure-assisted ozonation of PCB and PAH contaminated sediments. Chemosphere 72(11):1757–1764

    Article  Google Scholar 

  • Wang C-B, Zhang W-X (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156

    Article  CAS  Google Scholar 

  • Wu JJ, Muruganandham M, Yang JS, Lin SS (2006) Oxidation of DMSO on goethite catalyst in the presence of H2O2 at neutral pH. Catal Commun 7:901–906

    Article  CAS  Google Scholar 

  • Xu J, Bhattacharyya D (2007) Fe/Pd nanoparticle immobilization in microfiltration membrane pores: synthesis, characterization, and application in the dechlorination of polychlorinated biphenyls. Ind Eng Chem Res 46:2348–2359

    Article  CAS  Google Scholar 

  • Xue X, Hanna K, Abdelmoula M, Deng N (2009) Adsorption and oxidation of PCP on the surface of magnetite: kinetic experiments and spectroscopic investigations. Appl Catal B-Environ 89:432–440

    Article  CAS  Google Scholar 

  • Yak HK, Wenclawiak BW, Cheng IF, Doyle JG, Wai CM (1999) Reductive dechlorination of polychlorinated biphenyls by zerovalent iron in subcritical water. Environ Sci Technol 33:1307–1310

    Article  CAS  Google Scholar 

  • Yang B, Deng S, Yu G, Zhang H, Wu J, Zhuo Q (2011) Bimetallic Pd/Al particles for highly efficient hydrodechlorination of 2-chlorobiphenyl in acidic aqueous solution. J Hazard Mater 189:76–83

    Article  CAS  Google Scholar 

  • Yu W, Zhang T, Zhang J, Qiao X, Yang L, Liu Y (2006) The synthesis of octahedral nanoparticles of magnetite. Mater Lett 60:2998–3001

    Article  CAS  Google Scholar 

  • Zha S, Cheng Y, Gao Y, Chen Z, Megharaj M, Naidu R (2014) Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chem Eng J 255:141–148

    Article  CAS  Google Scholar 

  • Zhang L, Manthiram A (1997) Chains composed of nanosize metal particles and identifying the factors driving their formation. Appl Phys Lett 70:2469

    Article  CAS  Google Scholar 

  • Zhang Z, Hu S, Baig SA, Tang J, Xu X (2012) Catalytic dechlorination of Aroclor 1242 by Fe-Ni bimetallic nanoparticles. J Colloid Interf Sci 385:160–165

    Article  CAS  Google Scholar 

  • Zhu N, Li Y, Zhang F (2011) Catalytic dechlorination of polychlorinated biphenyls in subcritical water by Ni/Fe nanoparticles. Chem Eng J 171:919–925

    Article  CAS  Google Scholar 

  • Zhuang Y, Ahn S, Seyfferth AL, Masue-Slowey Y, Fendorf S, Luthy RG (2011) Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron. Environ Sci Technol 45:4896–4903

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this work by ADEME “Agence de l’Environnement et de la Maîtrise de l’Energie” and Region Bretagne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hanna.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rybnikova, V., Usman, M. & Hanna, K. Removal of PCBs in contaminated soils by means of chemical reduction and advanced oxidation processes. Environ Sci Pollut Res 23, 17035–17048 (2016). https://doi.org/10.1007/s11356-016-6881-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6881-0

Keywords

Navigation