Skip to main content

Advertisement

Log in

Heavy metal and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Vegetation associated with lacustrine systems in Northern Patagonia was studied for heavy metal and trace element contents, regarding their elemental contribution to these aquatic ecosystems. The research focused on native species and exotic vascular plant Salix spp. potential for absorbing heavy metals and trace elements. The native species studied were riparian Amomyrtus luma, Austrocedrus chilensis, Chusquea culeou, Desfontainia fulgens, Escallonia rubra, Gaultheria mucronata, Lomatia hirsuta, Luma apiculata, Maytenus boaria, Myrceugenia exsucca, Nothofagus antarctica, Nothofagus dombeyi, Schinus patagonicus, and Weinmannia trichosperma, and macrophytes Hydrocotyle chamaemorus, Isöetes chubutiana, Galium sp., Myriophyllum quitense, Nitella sp. (algae), Potamogeton linguatus, Ranunculus sp., and Schoenoplectus californicus. Fresh leaves were analyzed as well as leaves decomposing within the aquatic bodies, collected from lakes Futalaufquen and Rivadavia (Los Alerces National Park), and lakes Moreno and Nahuel Huapi (Nahuel Huapi National Park). The elements studied were heavy metals Ag, As, Cd, Hg, and U, major elements Ca, K, and Fe, and trace elements Ba, Br, Co, Cr, Cs, Hf, Na, Rb, Se, Sr, and Zn. Geochemical tracers La and Sm were also determined to evaluate contamination of the biological tissues by geological particulate (sediment, soil, dust) and to implement concentration corrections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arcagni M, Campbell LM, Arribére MA et al (2013a) Food web structure of Lake Moreno (Northwest Patagonia, Argentina) using C and N stable isotopes. Linmologica 43:131–142

    CAS  Google Scholar 

  • Arcagni M, Campbell LM, Arribére MA et al (2013b) Differential mercury transfer in the aquatic food web of a double basined lake associated with selenium and habitat. Sci Total Environ 454–455C:170–180

    Article  Google Scholar 

  • Arcagni M, Rizzo A, Campbell LM et al (2015) Analysis of the foodweb structure and the bentho-pelagic coupling in native and introduced fish in a Northwest Patagonia lake. J Great Lakes Res 41(3):916–925

    Article  Google Scholar 

  • Arribére MA, Ribeiro Guevara S, Bubach D et al (2006) Trace elements as fingerprint of lake of provenance and species of some native and exotic fish of northern Patagonian lakes. Biol Trace Elem Res 111(1–3):71–95

    Article  Google Scholar 

  • Arribére MA, Ribeiro Guevara S, Bubach D et al (2008) Selenium and mercury in native and introduced fish species in Patagonian lakes, Argentina. Biol Trace Elem Res 122:42–63

    Article  Google Scholar 

  • Arribére MA, Diéguez MC, Ribeiro Guevara S et al (2010a) Mercury in an ultraoligotrophic North Patagonian Andean lake (Argentina): concentration patterns in different components of the water column. J Environ Sci 22(8):1171–1178

    Article  Google Scholar 

  • Arribére MA, Campbell LM, Rizzo A et al (2010b) Trace elements in plankton, benthic organisms and forage fish of Lake Moreno, Northern Patagonia, Argentina. Water Air Soil Poll 212:167–182

    Article  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A Review of their distribution, ecology and phytochemestry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Barrera MD, Frangi JL, Ferrando JJ et al (2004) Descomposición del mantillo y liberación foliar neta de nutrientes de Austrocedrus chilensis (D. Don) Pic. Serm. et Bizzarri en El Bolsón, Río Negro. Ecología Austral 14:99–112

    Google Scholar 

  • Budde KB, Gallo L, Marchelli P et al (2010) Wide spread invasion without sexual reproduction? A case study on European willows in Patagonia, Argentina. Biological Invasions. doi:10.1007/s10530-010-9785-9

    Google Scholar 

  • Chiasson AG (1991) The ratio of rubidium to caesium in threespine stickleback (Gasterosteus aculeatus), benthic and limnetic ticklebacks (Gasterosteus), and juvenile sockeye salmon (Oncorhynchus nerka). Chem Ecol 5:227–240

    Article  CAS  Google Scholar 

  • Chung IH, Jeng SS (1974) Heavy metal pollution of Ta-Tu River. Bull Inst Zool Acad Sin 13:69–73

    CAS  Google Scholar 

  • Correa MN (1984) Flora Patagonica-Dicotyledones dialipétalas (Salicaceae a Cruciferae). Colección científica del INTA, Buenos Aires

    Google Scholar 

  • Cremona F, Planas D, Lucotte M (2010) Influence of functional feeding groups and spatiotemporal variables on the δ15N signature of littoral macroinvertebrates. Hydrobiologia 647:51–61

    Article  CAS  Google Scholar 

  • Daga R, Ribeiro Guevara S, Poiré D et al (2014) Characterization of dispersed volcanic products generated in recent events in the Northern Patagonia Andean Range: volcanoes Calbuco (1961) and Chaitén (2008), and Puyehue–Cordón Caulle complex (1960 and 2011). J S Am Earth Sci 49:1–14

    Article  CAS  Google Scholar 

  • Devlin RMR (1967) Plant physiology. Reinhold, New York, p 564

    Google Scholar 

  • Díaz M, Pedrozo F, Reynolds C et al (2007) Chemical composition and the nitrogen-regulated trophic state of Patagonia lakes. Limnologica 37:17–27

    Article  Google Scholar 

  • Diehl P, Mazzarino MJ, Funes F et al (2003) Nutrient conservation strategies in native Andean-Patagonian forests. J Veg Sci 14:63–70

    Article  Google Scholar 

  • Ferrando JJ, Goya JF, Barrera MD et al (2001) Biomasa y bioproductividad área de bosques de Austrocedrus Chilensis en Rio Negro, Argentina. Revista de la Facultad de Agronomia de la La Plata 104(2):139–149

    Google Scholar 

  • France R (1998) Density-weighted δ13C analysis of detritivory and algivory in littoral macroinvertebrate communities of boreal headwater lakes. Ann Zool Fenn 35:187–193

    Google Scholar 

  • Fritioff A, Gregor M (2003) Aquatic and terrestrial plant species with potential to remove heavy metals from stromwater. Intern J Phytores 5(3):211–224

    Article  CAS  Google Scholar 

  • Gentès S, Monperrus M, Legeay A et al (2013) Incidence of invasive macrophytes on methylmercury budget in temperate lakes: Central role of bacterial periphytic communities. Environ Pollut 172:116–23

    Article  Google Scholar 

  • Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in streams. Oikos 85:377–384

    Article  Google Scholar 

  • Gothberg A, Greger M (2006) Formation of methyl mercury in an aquatic macrophyte. Chemosphere 65:2096–2105

    Article  Google Scholar 

  • Gyenge JE, Fernández ME, Schlichter TM (2008) Are differences in productivity between native and exotic trees in N.W. Patagonia related to differences in hydraulic conductance? Trees 22:483–490

    Article  Google Scholar 

  • Hamelin S, Amyot M, Barkay T et al (2011) Methanogens: principal methylators of mercury in Lake periphyton. Environ Sci Technol 45:7693–700

    Article  CAS  Google Scholar 

  • Isaure MP, Fraysse A, Deves G (2006) Micro-chemical imaging of cesium distribution in Arabidopsis thaliana plant and its interaction with potassium and essential trace elements. Biochemie 88:1538–1590

    Article  Google Scholar 

  • Juncos R, Arcagni M, Rizzo A et al (2016) Natural origin arsenic in aquatic organisms from a deep oligotrophic lake under the influence of volcanic eruptions. Chemosphere 144:2277–2289

    Article  CAS  Google Scholar 

  • Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CRC Press, Boca Raton

    Google Scholar 

  • Kacálková L, Tlustoš P, Száková J (2015) Phytoextraction of risk elements by willow and poplar trees. International Journal of Phytoremediation 17(5):414–421

    Article  Google Scholar 

  • Kanevskii YP, Fleishman DG (1972) Investigation of food chains in an ichtyocoenosis of lake Dal’nyi (also spelt Dalnee) (Kamchatka) according to the concentrations of rubidium and cesium in hydrobionts. [Academy of Science of the U.S.S.R. Translated from Ékologiya 3, 5–8 (1971)]. Sov J Ecol. 191–193

  • King JK, Harmon SM, Fu TT et al (2002) Mercury removal, methyl-mercury formation, and sulfate-reducing bacteria profiles in wetland meso-cosms. Chemosphere 46(6):859–870

    Article  CAS  Google Scholar 

  • Kominkova D, Kuehn KA, Busing N et al (2000) Microbial biomass, growth and respiration associated with submerged litter of Phragmites australis decomposing in a littoral reed stand of a large lake. Aquat Microb Ecol 22:271–82

    Article  Google Scholar 

  • Lázaro WL, Guimarães JRD, Ignácio ARA et al (2013) Cyanobacteria enhance methylmercury production: a hypothesis tested in the periphyton of two lakes in the Pantanal floodplain, Brazil. Sci Total Environ 456–457:231–238

    Article  Google Scholar 

  • León RJC, Bran D, Collantes M et al (1998) Grandes unidades de vegetación de la Patagonia extra andina. Ecología Austral 8:125–144

    Google Scholar 

  • Markert B, Pedrozo F, Geller W et al (1997) A contribution to the study of the heavy-metal and nutritional element status of some lakes in the southern Andes of Patagonia (Argentina). Sci Total Environ 206:1–15

    Article  CAS  Google Scholar 

  • Memon A, Aktoprakligil D, Ozdemir A et al (2001) Heavy metal accumulation and detoxification mechanism in plant. Turk J Bot 25:111–121

    Google Scholar 

  • Naumann M (1996) Das nordpatagonische Seengebiet Nahuel Huapi (Argentinien). Biogeographische Struktur, Landnutzung seit dem 17. Jahrhundert und aktuelle

    Google Scholar 

  • Paruelo JM, Beltrán A, Jobbágy E et al (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral 8:85–101

    Google Scholar 

  • Peri PL, Bloomberg M (2002) Windbreaks in southern Patagonia, Argentina: a review of research on growth models, wind speed reduction, and effects on crops. Agrofor Syst 56:129–144

    Article  Google Scholar 

  • Rechencq M, Vigliano PH, Macchi PJ et al (2014) Fish distribution patterns and habitat availability in lakes Moreno Esteand Moreno Oeste, Patagonia, Argentina. Limnologica 49:73–83

    Article  Google Scholar 

  • Reimann C, Koller F, Frengstad B et al (2001) Comparison of the element composition in several plant species and their substrate from a 1500000-km2 area in Northern Europe. Sci Total Environ 278:87–112

    Article  CAS  Google Scholar 

  • Revenga JE, Campbell LM, Kyser K et al (2011) Trophodynamics and distribution of silver in a Patagonia Mountain Lake. Chemosphere 83:265–270

    Article  CAS  Google Scholar 

  • Revenga JE, Campbell LM, Arribére MA et al (2012) Arsenic, cobalt and chromium food web biodilution in a Patagonia mountain lake. Ecotox Environ Safe 81:1–10

    Article  CAS  Google Scholar 

  • Ribeiro Guevara S, Bubach D, Vigliano P et al (2004) Heavy metals and other trace elements in native mussel Diplodon chilensis from Northern Patagonia lakes, Argentina. Biol Trace Elem Res 102(1–3):245–264

    Article  Google Scholar 

  • Ribeiro Guevara S, Bubach D, Macchi PJ et al (2006) Rb–Cs ratio as an indicator of fish diet in lakes of the Patagonia, Argentina. Biol Trace Elem Res 111:97–119

    Article  Google Scholar 

  • Rizzo A, Arcagni M, Arribére MA et al (2011) Mercury in the biotic compartments of Northwest Patagonia lakes, Argentina. Chemosphere 84:70–79

    Article  CAS  Google Scholar 

  • Rizzo A, Arcagni M, Campbell LM et al (2014) Source and trophic transfer of mercury in plankton from an ultraoligotrophic lacustrine system (Lake Nahuel Huapi, North Patagonia). Ecotoxicology 23(7):1184–1194

    Article  CAS  Google Scholar 

  • Robinson BH, Mills TM, Petit D et al (2000) Natural and induced cadmium-accumulation in poplar and willow: Implications for phytoremediation. Plant and Soil 227:301–306

    Article  CAS  Google Scholar 

  • Robinson B, Mills T, Green S et al (2005) Trace element accumulation by poplars and willows used for stock fodder. New Zeal J Agr Res 48(4):489–497

    Article  Google Scholar 

  • Ruggieri F, Fernandez–Turiel J, Saavedra J et al (2011) Environmental geochemistry of recent volcanic ashes from the Southern Andes. Environ Chem 8:236–247

    Article  CAS  Google Scholar 

  • Soto Cárdenas C, Diéguez MC, Ribeiro Guevara S et al (2014) Incorporation of inorganic mercury (Hg2+) in pelagic food webs of ultraoligotrophic and oligotrophic lakes: the role of different plankton size fractions and species assemblages. Sci Total Environ 494–495:65–73

    Article  Google Scholar 

  • Stern C (2004) Active Andean volcanism: its geologic and tectonic setting. Revista Geológica de Chile 31:161–206

    Article  Google Scholar 

  • Vigliano P, Beauchamp DA, Milano et al (2009) Quantifying predation on Galaxiids and other native organisms by introduced rainbow trout in an ultraoligotrophic lake in Northern Patagonia, Argentina: a bioenergetics modeling approach. T Am Fish Soc 38:1405–1419

    Article  Google Scholar 

  • Watras CJ, Back RC, Halvorsen S et al (1998) Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ 219:183–208

    Article  CAS  Google Scholar 

  • Webster R, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Ann Rev Ecol System 17:567–594

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Ricardo Sánchez for his collaboration in field work and sample conditioning, to the reactor RA–6 operation staff for their assistance in sample analysis, and to two unknown reviewers for their valuable comments. This work was partially supported by the projects PICT 33838, Agencia Nacional de Promoción Científica y Tecnológica (Argentina), Fundación Balseiro 85/CA/10, Universidad Nacional de Cuyo project 06/C414 SECTyP, and IAEA TCP ARG7007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Ribeiro Guevara.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juárez, A., Arribére, M.A., Arcagni, M. et al. Heavy metal and trace elements in riparian vegetation and macrophytes associated with lacustrine systems in Northern Patagonia Andean Range. Environ Sci Pollut Res 23, 17995–18009 (2016). https://doi.org/10.1007/s11356-016-6811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6811-1

Keywords

Navigation