Skip to main content
Log in

Selenium and Mercury in Native and Introduced Fish Species of Patagonian Lakes, Argentina

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A survey of mercury (Hg) and selenium (Se) contents was performed in fish collected from lakes located in two National Parks of the northern patagonian Andean range. Two native species, catfish (Diplomystes viedmensis) and creole perch (Percichthys trucha), and three introduced species, brown trout (Salmo trutta), rainbow trout (Oncorhynchus mykiss), and brook trout (Salvelinus fontinalis), were caught from lakes Nahuel Huapi, Moreno, Traful, Espejo Chico, and Guillelmo belonging to Nahuel Huapi National Park and from lakes Futalaufquen and Rivadavia, Los Alerces National Park. In lake Moreno, fish diet items were analyzed and rainbow trout grown in a farm. Hg and Se were measured in muscle and liver tissues by instrumental neutron activation analysis. The average concentrations in muscle of Hg for all species, ages, and lakes are between 0.4 to 1.0 μg g−1 dry weight (DW) with a few fish, mainly native, exceeding the United States Environmental Protection Agency health advisory for freshwater fish limited consumption, and from 0.8 to 1.5 μg g−1 DW for Se. Average concentrations in liver of Hg in all species range from 0.4 to 0.9 μg g−1 DW. Brown trout, the top predator in these lakes, showed the lowest average Hg burden in both tissues. Se concentrations in the liver of brown and rainbow trout, up to 279 μg g−1 DW, are higher than those expected for nearly pristine lakes, exceeding 20 μg g−1 DW, the threshold concentration associated with Se toxicity. These species show lower Hg contents in muscle, suggesting a possible detoxification of Hg by a Se-rich diet. Creole perch and velvet catfish livers have lower Se concentrations, with a narrower span of values (2.3 to 8.5 μg g−1 and 3.3 to 5.5 μg g−1 DW respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eisler R (1999) Selenium hazards to fish, wildlife, and invertebrates: a synoptic review, in Contaminant Hazard Reviews, Report 5, USGS/BRD/BSR-1999-0002

  2. Presser T, Sylvester M, Low W (1994) Bioaccumulation of selenium from natural geological sources and its potential consequences. Environ Manage 18:423–436

    Article  Google Scholar 

  3. Presser T (1994) The Kesterton effect. Environ Manage 18:437–454

    Article  Google Scholar 

  4. Lemly AD (1998) Pathology of selenium poisoning in fish. In: Frankenberger WT, Engberg RR (eds) Environmental chemistry of selenium. Marcel Dekker, New York

    Google Scholar 

  5. Sorensen EMB, Cumbie PM, Bauer TL, Bell JS, Harlan CW (1984) Histopathological, hematological, condition-factor, and organ weight changes associated with selenium accumulation in fish from Belews Lake, North Carolina. Arch Environ Contam Toxicol 13:153–162

    Article  PubMed  CAS  Google Scholar 

  6. Eisler R (1999) Mercury hazards to fish, wildlife, and invertebrates: a synoptic review, in Contaminant Hazard Reviews, Report 10, USGS/BRD/BSR-1999-0002

  7. Paulsson K, Lundbergh K (1991) Treatment of mercury contaminated fish by selenium addition. Water Air Soil Pollut 56:833–841

    Article  CAS  Google Scholar 

  8. EPA (1997) Mercury report to congress. United States Environmental Protection Agency, EAP-425/R-97-003 and 005

  9. UNEP (2002) Global mercury assessment. United Nations Environmental Program Report, Geneva

  10. Sigel A, Sigel H (1997) Mercury and its effects on environment and biology. Marcel Dekker, New York

    Google Scholar 

  11. Rudd JW, Turner MA (1983) Selenium in lake enclosures: its geochemistry, bioaccumulation and ability to reduce mercury bioaccumulation. Can J Fish Aquat Sci 40:2228–2250

    Google Scholar 

  12. Fjield E, Rognerud S (1993) Use of path analysis to investigate mercury accumulation in brown trout (Salmo trutta) in Norway and the influence of environmental factors. Can J Fish Aquatic Sci 50:1158–1167

    Article  Google Scholar 

  13. Southworth GR, Peterson MJ, Ryon MG (2000) Long-term increased bioaccumulation of mercury in largemouth bass follows reduction of waterborne selenium. Chemosphere 41:1101–1105

    Article  PubMed  CAS  Google Scholar 

  14. Bjerregaard P, Andersen D, Rankin JJ (1999) Retention of methylmercury in rainbow trout, Oncorhynchus mykiss: effect of dietary selenium. Aquatic Toxicol 45:171–180

    Article  CAS  Google Scholar 

  15. Cuvin Aralar MA, Furness R (1991) Mercury and selenium interaction: a review. Ecotox Environ Saf 21:348–364

    Article  CAS  Google Scholar 

  16. Chen YW, Belzile N, Gunn JM (2001) Antagonistic effect of Selenium on mercury assimilation by fish populations near Sudbury metal smelters. Limnol Oceanogr 46(7):1814–1818

    Article  CAS  Google Scholar 

  17. Belzile N, Chen YW, Gunn JM, Tong J, Alarie Y, Delonchamp T, Lang CY (2006) The effect of selenium on mercury assimilation by freshwater organisms. Can J Fish Aquat Sci 63:1–10

    Article  CAS  Google Scholar 

  18. Heinz GH, Hoffman DJ (1998) Methylmercury chloride and selenomethionine interactions on health and reproduction in mallards. Environ Toxicol Chem 17(2):139–145

    Article  CAS  Google Scholar 

  19. Heinz GH, Hoffman DJ (1998) Effects of mercury and selenium on glutathione metabolism and oxidative stress in mallard ducks. Environ Toxicol Chem 17(2):161–166

    Article  Google Scholar 

  20. Bubach DF, Arribére MA, Ribeiro Guevara S, Calvelo S (2001) Study on the feasibility of using transplanted Protousnea magellanica thalli as bioindicators of atmospheric contamination. J Radioanal Nuc Chem 250:63–68

    Article  CAS  Google Scholar 

  21. Ribeiro Guevara S, Massaferro J, Villarosa G, Arribére MA, Rizzo AP (2002) Heavy metal contamination in sediments of lake Nahuel Huapi, Nahuel Huapi National Park, Northern Patagonia, Argentina. Water Air Soil Pollut 137:21–44

    Article  CAS  Google Scholar 

  22. Ribeiro Guevara S, Bubach DF, Vigliano PH, Lippolt G, Arribére MA (2004) Heavy metals and other trace elements in native mussel Diplodon chilensis from Northern Patagonian lakes, Argentina. Biol Trace Elem Res 102(1–3):245

    Article  PubMed  Google Scholar 

  23. Ribeiro Guevara S, Bubach DF, Arribére MA (2004) Mercury in lichens of Nahuel Huapi National Park, Patagonia, Argentina. J Radioanal Nuc Chem 261(3):679–687

    Article  CAS  Google Scholar 

  24. Ribeiro Guevara S, Arribére MA, Bubach DF, Vigliano P, Rizzo A, Alonso M, Sánchez R (2005) Silver contamination on abiotic and biotic compartments of lake Nahuel Huapi National Park lakes, Patagonia, Argentina. Sci Total Environ 336(1–3):119–134

    CAS  Google Scholar 

  25. Ribeiro Guevara S, Rizzo A, Sánchez RS, Arribére MA (2005) Heavy metal inputs in Northern Patagonia lakes from short sediment core analysis. J Radioanal Nuc Chem 265(3):481–493

    Article  CAS  Google Scholar 

  26. Calcagno A, Fioritti MJ, Pedrozo F, Vigliano PH, López H, Rey C, Razquin ME, Quirós R (1995) Catálogo de lagos y embalses de la República Argentina. Ministerio de Economía y Obras y Servicios Públicos, Secretaría de Obras Públicas, Subsecretaría de Recursos Hídricos, Argentina

  27. Pascual M, Macchi PJ, Urbanski J, Marcos F, Riva Rossi C, Novara M, Dell’ Arciprete P (2002) Evaluating potential effects of exotic freshwater fish from incomplete species presence–absence data. Biol Invasions 4:101–113

    Article  Google Scholar 

  28. Vigliano PH, Alonso MF, Denegri MA, Garcia Asorey MI, Lippolt G, Macchi PJ, Milano D (2001) Estructura de las comunidades de peces de lagos y embalses patagónicos: estado actual del conocimiento y problemática. Proc. I Encuentro Binacional de Ecología, XX Reunión Argentina de Ecología and X Reunión de la Sociedad de Ecología de Chile, Bariloche, Argentina

  29. Vigliano PH, Alonso MF (2007) Salmonid introductions in Patagonia Argentina: a mixed blessing. In: Bret TM (ed) Ecological and genetic implications of aquaculture. Springer, The Netherlands

    Google Scholar 

  30. Macchi PJ, Cussac VE, Alonso MF, Denegri MA (1999) Predation relationships between introduced salmonids and the native fish fauna in lakes and reservoirs in Northern Patagonia. Ecol Freshw Fish 8:227–236

    Article  Google Scholar 

  31. Ribeiro Guevara S, Bubach DF, Macchi PJ, Vigliano PH, Arribére MA, Colombo JC (2006) Rb–Cs ratio as an indicator of fish diet in lakes of the Patagonia, Argentina. Biol Trace Elem Res 110:97–119

    Article  Google Scholar 

  32. Vigliano PH, Macchi PJ, Denegri MA, Alonso MF, Milano D, Lippolt G, Padilla G (1999) Un diseño modificado y procedimiento de calado de redes agalleras para estudios cuali-cuantitativos de peces por estratos de profundidad en lagos araucanos. Natura Neotropicalis 30(1–2):1–11

    Google Scholar 

  33. Arribére MA, Ribeiro Guevara S, Bubach DF, Vigliano PH (2006) Trace elements as fingerprint of lake of provenance and of species of some native and exotic fish of northern Patagonian lakes. Biol Trace Elem Res 110:71–95

    Article  Google Scholar 

  34. Ramirez Jr, P, Dickerson K (1997) Follow-up investigation of selenium and other trace elements in biota from the Riverton Reclamation Project, Fremont County, Wyoming, Contaminant Report Number: R6/709C/97

  35. Kaiser II, Young P, Johnson JD (1979) Chronic exposure of trout to waters with naturally high selenium levels: effects on transfer RNA methylation. J Fish Res Board Canada 36:689–694

    CAS  Google Scholar 

  36. Evans MS, Muir D, Lockhart WL, Stern G, Ryan M, Roach P (2005) Persistent organic pollutants and metals in the freshwater biota of the Canadian Subarctic and Arctic: an overview. Sci Total Environ 351–352:94–147

    PubMed  Google Scholar 

  37. Mauk RJ, Brown ML (2001) Selenium and mercury concentrations in brood-stock walleye collected from three sites on Lake Oahe. Arch Environ Contam Toxicol 40:257–263

    Article  PubMed  CAS  Google Scholar 

  38. Dorea JG, Moreira MB, East G, Barbosa AC (1998) Selenium and mercury concentrations in some fish species of the Madeira river, Amazon basin, Brazil. Biol Trace Elem Res 65:211–220

    Article  PubMed  CAS  Google Scholar 

  39. Stewart AR, Luoma SN, Schlekat CE, Doblin MA, Hieb KA (2004) Food web pathway determines how selenium affects aquatic ecosystems: a San Francisco Bay case study. Environ Sci Technol 38:4519–4526

    Article  PubMed  CAS  Google Scholar 

  40. Barwick M, Maher W (2003) Biotransference and biomagnification of selenium, copper, cadmium, zinc, arsenic and lead in a temperate seagrass ecosystem from Lake Macquarie Estuary, NSW, Australia. Mar Environ Res 56:471–502

    Article  PubMed  CAS  Google Scholar 

  41. Akielaszak JJ, Haines TA (1981) Mercury in the muscle tissue of fish from three northern Maine lakes. Bull Environ Contam Toxicol 27:201–208

    Article  Google Scholar 

  42. Sloan R, Schofield C (1983) Mercury levels in brook trout (Salvelinus fontinalis) from selected acid and limed Adirondack lakes. Northeast Environ Sci 2:165–170

    CAS  Google Scholar 

  43. Vuorinen PJ, Rantio T, Witick A, Vuorinen M (1994) Organochlorines and heavy metals in sea trout (Salmo trutta) in the gulf of Bothnia off the coast of Finland. Aqua Fennica 24(1):29–35

    CAS  Google Scholar 

  44. Kim JP (1995) Methylmercury in rainbow trout (Oncorhynchus mykiss) from Lakes Okareka, Okaro, Rotomahana, Rotorua and Tarawera, North Island, New Zealand. Sci Total Environ 164:209–219

    Article  CAS  Google Scholar 

  45. Kim JP, Burggraaf S (1999) Mercury bioaccumulation in rainbow trout (Oncorhynchus mykiss) and the trout food web in lakes Okarera, Okaro, Rotomahana and Rotorua, New Zealand. Water Air Soil Pollut 115:535–546

    Article  CAS  Google Scholar 

  46. Rose J, Hutcheson MS, West CR, Pancorbo O, Hulme K, Cooperman A, DeCesare G, Isaac R, Screpetis A (1999) Fish mercury distribution in Massachusetts, USA lakes. Environ Toxicol Chem 18(7):1370–1379

    Article  CAS  Google Scholar 

  47. Newman MC, Jagoe CH (1994) Ligands and the bioavailability of metals in the aquatic environments. In: Hamelink JM, Landrum PF, Bergman HL, Benson WH (eds) Bioavailability. CRC Press, Boca Raton, USA

    Google Scholar 

  48. Huckabee JW, Elwood JW, Hildebrand SG (1979) Accumulation of mercury in freshwater biota. In: Nriagu J (ed) The biogeochemistry of mercury in the environment. Elsevier, Amsterdam

    Google Scholar 

  49. Jobling M (1993) Bioenergetics: Feed intake and energy partitioning. In: Rankin JC, Jensen FB (eds) Fish ecophysiology. Chapman and Hall, USA

    Google Scholar 

  50. Bridges CR (1993) Ecophysiology of intertidal fish. In: Rankin JC, Jensen FB (eds) Fish ecophysiology. Chapman and Hall, USA

    Google Scholar 

  51. Neumann CM, Kauffman KW, Gilroy DJ (1997) Methylmercury in fish from Owyhee Reservoir in Southeast Oregon: scientific uncertainty and fish advisories. Sci Total Environ 204:205–214

    Article  PubMed  CAS  Google Scholar 

  52. Mason RP, Laporte JM, Andres S (2000) Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium and cadmium by freshwater invertebrates and fish. Arch Environ Contam Toxicol 38:283–297

    Article  PubMed  CAS  Google Scholar 

  53. Jenkins DW (1980) Biological monitoring of toxic trace metals. Vol. 2. Toxic trace metals in plants and animals of the world, Part 1. U.S. Environmental Protection Agency Rep. 600/3-80-090:30–138

  54. Suns K, Hitchin G (1990) Interrelationships between mercury levels in yearling yellow perch, fish condition and water quality. Water Air Soil Pollut 650:255–265

    Article  Google Scholar 

  55. Bloom NS (1992) On the chemical form of Hg in edible fish and marine invertebrate tissue. Can J Fish Aquatic Sci 49(5):1010–1017

    CAS  Google Scholar 

  56. Neumann RM, Ward SM (1999) Bioaccumulation and biomagnification of mercury in two warm water fish communities. J Freshw Ecol 14(4):487–497

    CAS  Google Scholar 

  57. Scheuhammer AM, Graham JE (1999) The bioaccumulation of mercury in aquatic organisms from two similar lakes with differing pH. Ecotoxicol 8:49–56

    Article  CAS  Google Scholar 

  58. Holsbeek L, Das HK, Joiris CR (1997) Mercury speciation and accumulation in Bangladesh freshwater and anadromous fish. Sci Total Environ 198:201–210

    Article  PubMed  CAS  Google Scholar 

  59. Burger J, Cooper K, Gochfeld M (1992) Exposure assessment for heavy metal ingestion from a sport fish in Puerto Rico: estimating risk for local fishermen. J Toxicol Environ Health 36:355–365

    Article  PubMed  CAS  Google Scholar 

  60. Sindayigaya E, Van Cauwenbergh R, Robberecht H, Deelstra H (1994) Copper, zinc, manganese, iron, lead, cadmium, mercury and arsenic in fish from Lake Tanganika, Burundi. Sci Total Environ 144:103–115

    Article  PubMed  CAS  Google Scholar 

  61. Benemariya H, Robberecht H, Deelstra H (1994) Atomic absorption spectrometric determination of Zinc, Copper and Selenium in fish from Lake Tanganika, Burundi, Africa. Sci Total Environ 144:103–115

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the RA-6 reactor operation staff for their assistance during the irradiations. This work was carried out within the Technical Cooperation Agreement ARG/7/006 with the International Atomic Energy Agency (IAEA)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Arribére.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arribére, M.A., Ribeiro Guevara, S., Bubach, D.F. et al. Selenium and Mercury in Native and Introduced Fish Species of Patagonian Lakes, Argentina. Biol Trace Elem Res 122, 42–63 (2008). https://doi.org/10.1007/s12011-007-8059-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-007-8059-6

Keywords

Navigation