Skip to main content
Log in

Transport stability of pesticides and PAHs sequestered in polyethylene passive sampling devices

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Research using low-density polyethylene (LDPE) passive samplers has steadily increased over the past two decades. However, such research efforts remain hampered because of strict guidelines, requiring that these samplers be quickly transported in airtight metal or glass containers or foil wrapped on ice. We investigate the transport stability of model pesticides and polycyclic aromatic hydrocarbons (PAHs) with varying physicochemical properties using polytetrafluoroethylene (PTFE) bags instead. Transport scenarios were simulated with transport times up to 14 days with temperatures ranging between −20 and 35 °C. Our findings show that concentrations of all model compounds examined were stable for all transport conditions tested, with mean recoveries ranging from 88 to 113 %. Furthermore, PTFE bags proved beneficial as reusable, lightweight, low-volume, low-cost alternatives to conventional containers. This documentation of stability will allow for more flexible transportation of LDPE passive samplers in an expanding range of research applications while maintaining experimental rigor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams RG, Lohmann R, MacFarlane LK, Gschwend PM (2007) Polyethylene devices: passive samplers for measuring dissolved hydrophobic organic compounds in aquatic environments. Environ Sci Technol 41:1317–1323. doi:10.1021/es0621593

    Article  CAS  Google Scholar 

  • Allan SE, Smith BW, Anderson KA (2012) Impact of the deepwater horizon oil spill on bioavailable polycyclic aromatic hydrocarbons in Gulf of Mexico coastal waters. Environ Sci Technol 46:2033–2039. doi:10.1021/es202942q

    Article  CAS  Google Scholar 

  • Alvarez DA (2010) Guidelines for the use of the semipermeable membrane device (SPMD) and the polar organic chemical integrative sampler (POCIS) in environmental monitoring studies. U.S. Geological Survey

  • Alvarez DA, Maruya KA, Dodder NG, Lao W, Furlong ET, Smalling KL (2014) Occurrence of contaminants of emerging concern along the California coast (2009–10) using passive sampling devices. Mar Pollut Bull 81:347–354. doi:10.1016/j.marpolbul.2013.04.022

    Article  CAS  Google Scholar 

  • Anderson KA, Sethajintanin D, Sower GJ, Quarles L (2008) Field trial and modeling of uptake rates of in situ lipid-free polyethylene membrane passive sampler. Environ Sci Technol 42:4486–4493. doi:10.1021/es702657n

    Article  CAS  Google Scholar 

  • Anderson KA, Seck D, Hobbie KA, Traore AN, McCartney MA, Ndaye A, Forsberg ND, Haigh TA, Sower GJ (2014) Passive sampling devices enable capacity building and characterization of bioavailable pesticide along the Niger, Senegal and Bani Rivers of Africa. Philos T R Soc B 369:20130110. doi:10.1098/rstb.2013.0110

    Article  Google Scholar 

  • Bajaj S, Singla D, Sakhuja N (2012) Stability testing of pharmaceutical products. J App Pharm 02:129–138. doi:10.7324/JAPS.2012.2322

    Google Scholar 

  • Booij K, Smedes F, Weerlee EMV (2002) Spiking of performance reference compounds in low density polyethylene and silicone passive water samplers. Chemosphere 46:1157–1161. doi:10.1016/S0045-6535(01)00200-4

    Article  CAS  Google Scholar 

  • Booij K, van Bommel R, Mets A, Dekker R (2006) Little effect of excessive biofouling on the uptake of organic contaminants by semipermeable membrane devices. Chemosphere 65:2485–2492. doi:10.1016/j.chemosphere.2006.04.033

    Article  CAS  Google Scholar 

  • Fernandez LA, Gschwend PM (2015) Predicting bioaccumulation of polycyclic aromatic hydrocarbons in soft-shelled clams (Mya arenaria) using field deployments of polyethylene passive samplers. Environ Toxicol Chem 34:993–1000. doi:10.1002/etc.2892

    Article  CAS  Google Scholar 

  • Fernandez LA, Lao W, Maruya KA, Burgess RM (2014) Calculating the diffusive flux of persistent organic pollutants between sediments and the water column on the Palos Verdes Shelf Superfund Site using polymeric passive samplers. Environ Sci Technol 48:3925–3934. doi:10.1021/es404475c

    Article  CAS  Google Scholar 

  • Ghosh U et al (2014) Passive sampling methods for contaminated sediments: practical guidance for selection, calibration, and implementation. Integr Environ Assess Manag 10:210–223. doi:10.1002/ieam.1507

    Article  CAS  Google Scholar 

  • Huckins JN, Tubergen MW, Manuweera GK (1990) Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere 20:533–552. doi:10.1016/0045-6535(90)90110-F

    Article  CAS  Google Scholar 

  • Huckins JN, Petty JD, Lebo JA, Almeida FV, Booij K, Alvarez DA, Cranor WL, Clark RC, Mogensen BB (2002) Development of the permeability/performance reference compound approach for in situ calibration of semipermeable membrane devices. Environ Sci Technol 36:85–91. doi:10.1021/es010991w

    Article  CAS  Google Scholar 

  • Huckins J, Petty J, Booij K (2006) Monitors of organic chemicals in the environment: semipermeable membrane devices. Springer, New York. doi:10.1007/0-387-35414-X

    Google Scholar 

  • International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use (2003) stability testing of new drug substances and products Q1A(R2)

  • Khairy M, Muir D, Teixeira C, Lohmann R (2014) Spatial trends, sources, and air-water exchange of organochlorine pesticides in the Great Lakes basin using low density polyethylene passive samplers. Environ Sci Technol 48:9315–9324. doi:10.1021/es501686a

    Article  CAS  Google Scholar 

  • Korfmacher WA, Wehry EL, Mamantov G, Natusch DFS (1980) Resistance to photochemical decomposition of polycyclic aromatic hydrocarbons vapor-adsorbed on coal fly ash. Environ Sci Technol 14:1094–1099. doi:10.1021/es60169a019

    Article  CAS  Google Scholar 

  • Liu H-H, Bao L-J, Feng W-H, Xu S-P, Wu F-C, Zeng EY (2013) A multisection passive sampler for measuring sediment porewater profile of dichlorodiphenyltrichloroethane and its metabolites. Anal Chem 85:7117–7124. doi:10.1021/ac400589a

    Article  CAS  Google Scholar 

  • Lohmann R (2012) Critical review of low-density polyethylene’s partitioning and diffusion coefficients for trace organic contaminants and implications for its use as a passive sampler. Environ Sci Technol 46:606–618. doi:10.1021/es202702y

    Article  CAS  Google Scholar 

  • McDonough CA, Khairy MA, Muir DC, Lohmann R (2014) Significance of population centers as sources of gaseous and dissolved PAHs in the lower Great Lakes. Environ Sci Technol 48:7789–7797. doi:10.1021/es501074r

    Article  CAS  Google Scholar 

  • Melymuk L, Bohlin P, Sanka O, Pozo K, Klanova J (2014) Current challenges in air sampling of semivolatile organic contaminants: sampling artifacts and their influence on data comparability. Environ Sci Technol 48:14077–14091. doi:10.1021/es502164r

    Article  CAS  Google Scholar 

  • Mills GA, Gravell A, Vrana B, Harman C, Budzinski H, Mazzella N, Ocelka T (2013) Measurement of environmental pollutants using passive sampling devices—an updated commentary on the current state of the art. Env Sci Process Impact 16:369–373. doi:10.1039/c3em00585b

    Article  Google Scholar 

  • O’Connell SG, Haigh T, Wilson G, Anderson KA (2013) An analytical investigation of 24 oxygenated-PAHs (OPAHs) using liquid and gas chromatography–mass spectrometry. Anal Bioanal Chem 405:8885–8896. doi:10.1007/s00216-013-7319-x

    Article  Google Scholar 

  • O’Connell SG, Kincl LD, Anderson KA (2014) Silicone wristbands as personal passive samplers. Environ Sci Technol 48:3327–3335. doi:10.1021/es405022f

    Article  Google Scholar 

  • Oen AM, Janssen EM, Cornelissen G, Breedveld GD, Eek E, Luthy RG (2011) In situ measurement of PCB pore water concentration profiles in activated carbon-amended sediment using passive samplers. Environ Sci Technol 45:4053–4059. doi:10.1021/es200174v

    Article  CAS  Google Scholar 

  • Paulik LB, Donald CE, Smith BW, Tidwell LG, Hobbie KA, Kincl L, Haynes EN, Anderson KA (2015) Impact of natural gas extraction on PAH levels in ambient air. Environ Sci Technol 49:5203–5210. doi:10.1021/es506095e

    Article  CAS  Google Scholar 

  • Rueck A, Hellriegel C (2014) The importance of accelerated stability tests for the development of certified reference materials (CRM). Sigma-Aldrich Marketing Communications Europe, Buchs

    Google Scholar 

  • Rusina TP, Smedes F, Klanova J, Booij K, Holoubek I (2007) Polymer selection for passive sampling: a comparison of critical properties. Chemosphere 68:1344–1351. doi:10.1016/j.chemosphere.2007.01.025

    Article  CAS  Google Scholar 

  • Tidwell LG, Allan SE, O’Connell SG, Hobbie KA, Smith BW, Anderson KA (2015) Polycyclic aromatic hydrocarbon (PAH) and oxygenated PAH (OPAH) air-water exchange during the deepwater horizon oil spill. Environ Sci Technol 49:141–149. doi:10.1021/es503827y

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2012) Guidelines for using passive samplers to monitor organic contaminants at superfund sediment sites. Office of Superfund Remediation and Technology Innovation, Office of Research and Development

  • U.S. Environmental Protection Agency (2015) Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.1.25. United States Environmental Protection Agency, Washington

    Google Scholar 

Download references

Acknowledgments

This project was supported in part by award number P42 ES016465 and the associated Chemistry Facility Core, P30 ES000210, from the National Institute of Environmental Health Sciences (NIEHS). Carey E. Donald and Marc R. Elie were supported in part by NIEHS Training Grant Fellowship T32ES007060 from the National Institutes of Health (NIH). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIEHS or NIH. The authors wish to thank Ricky Scott, Glenn Wilson, Melissa McCartney, and Kristin Kamerud for help in chemical analysis and instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim A. Anderson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Roland Kallenborn

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donald, C.E., Elie, M.R., Smith, B.W. et al. Transport stability of pesticides and PAHs sequestered in polyethylene passive sampling devices. Environ Sci Pollut Res 23, 12392–12399 (2016). https://doi.org/10.1007/s11356-016-6453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6453-3

Keywords

Navigation